Oblivious Pseudorandom Functions (OPRFs) using Prime-Order Groups

Alex Davidson, Armando Faz Hernández, Nick Sullivan, Christopher Wood
draft-irtf-cfrg-voprf@ietf.org

Sources: github.com/cfrg/draft-irtf-cfrg-voprf
Data Tracker: datatracker.ietf.org/doc/draft-irtf-cfrg-voprf
OPRF: Oblivious Pseudorandom Function

Two-party 1-RRT protocol between a server and a client

Client holds some input x
Server holds a private key k

$$y = \text{PRF}(k, x)$$

Oblivious

Client learns y, but nothing about k.
Server does not learn anything about x or y.

Verifiable

Client verifies proof that PRF was computed with k.
Server commits to the key k, and gives a proof.
Latest Changes

Issue #219 Folding Unblind into Finalize API
Finalize uses Unblind as a subroutine, no intermediate values are exposed

Issue #226 Removed the info parameter
Domain separation must now be provided as part of the input

Issue #239 Updates on proof generation
Improved interface for DLEQ proof of knowledge

Issue #234: Use SHAKE-256 for Decaf group
Implementations of Curve448 are likely accompanied by SHAKE
Issue #225: “Weakly” Verifiable construction without NIZK proofs

- Construction 4 eprint.iacr.org/2020/072
- No explicit proof is transmitted
- Only client-side changes (server does $R = k \cdot T_0$)

\[
T_0 = r \cdot [H(x)] \\
T_1 = \left(\frac{1}{r}\right) \cdot R
\]

\[
T_0 = r \cdot [H(x) - s \cdot G] \\
T_1 = \left(\frac{1}{r}\right) \cdot R + s \cdot K_{pub}
\]

- Verify a linear combination of tokens at the cost of one issuance operation
Unsafe blinding (eprint.iacr.org/2021/273)

Let G be a group in multiplicative (additive) notation

- Exponential (multiplicative) blinding is safe
- Some uses of multiplicative (additive) blinding are unsafe
Questions?

Sources: github.com/cfrg/draft-irtf-cfrg-voprf

Data Tracker: datatracker.ietf.org/doc/draft-irtf-cfrg-voprf

Issues: github.com/cfrg/draft-irtf-cfrg-voprf/issues