
Diogo Barradas - coinrg (IETF 110)

FlowLens: Enabling Efficient Traffic Analysis for Security
Applications Using Programmable Switches

Diogo Barradas Nuno Santos Luís

Rodrigues

 Fernando Ramos André Madeira
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

 Salvatore Signorello

LASIGE, Faculdade de Ciências, Universidade de Lisboa

Diogo Barradas - coinrg (IETF 110) 2

Performance Breakthroughs with Programmable Switches

● Line-speed packet processing at Tbps

● Fully programmable in the P4 language

● Recent focus of HW manufacturers
New opportunities for

network security

http://progress_bar_id

Diogo Barradas - coinrg (IETF 110) 3

Line-speed packet processing
Highly efficient

Securing High-Speed Networks

● Programmable switches are used to:

○ Obfuscate Network Topologies [NetHide, SEC’18]

○ Filter spoofed IP traffic [NetHCF, ICNP’19]

○ Mitigate DDoS attacks [Poseidon, NDSS’20]

○ Thwart network covert channels [NetWarden, SEC’20]

Fine-tuned for specific
application domain

http://progress_bar_id

Diogo Barradas - coinrg (IETF 110)

There are Other Prominent ML-based Security Applications

4

Botnet Detection

IoT Behavioral Analysis

Website Fingerprinting

Detection of Covert Channels

Statistical Traffic Analysis

Packet lengths Packets inter-arrival time

+
ML-based classifier

Generic approach towards detecting multiple attacks

http://progress_bar_id

Diogo Barradas - coinrg (IETF 110)

Collecting Packet Distributions in
Programmable Switches is Hard

5

● Stateful memory is severely limited
○ ~100 MB SRAM
○ No memory for storing many flows

In-network

traffic analysis

● Packets must be processed at line speed (< a few tens of ns)
○ Limited number of operations
○ Reduced [domain-specific] instruction set

It does not seem feasible to obtain packet distributions in
programmable switches at scale

http://progress_bar_id

Diogo Barradas - coinrg (IETF 110)

Research Question

6

● Can we collect packet distributions within programmable switches?

In-network

traffic analysis

Efficient Generic

http://progress_bar_id

Diogo Barradas - coinrg (IETF 110)

Solutions for Collecting Packet
Distributions Have a Few Drawbacks

7

In-network

traffic analysis

*Flow, USENIX ATC’18

Large Bandwidth Costs

host1

host2 Monitoring
server

packet headers or
specific fieldspacket

Generic

Prog. Switch

Netwarden, USENIX SEC’20

host1 host2

normal traffic

Prog. Switch

Efficient

Application-tailored

covert channels

http://progress_bar_id

Diogo Barradas - coinrg (IETF 110)

Contributions

8

FlowLens: a flow classification system for generic ML-based security tasks

● Flow markers: Compact representation of
packet distributions in prog. switches

● Automatic profiling: Application-tailored
configuration of flow markers

FlowLens Client

Programmable Switch

● Evaluation: Tested in 3 different security tasks

● Flow marker accumulator: Implementation
of flow marker collection in switching hardware

Efficient Generic

http://progress_bar_id

Diogo Barradas - coinrg (IETF 110)

FlowLens Architecture

9

Profiling

Classification

Compression of packet
distributions

In-network

traffic analysis

● Distributed Deployment
○ Scale # of measured flows
○ Ensure network visibility

● Coordinated Operation
○ Multiple ML applications

http://progress_bar_id

Diogo Barradas - coinrg (IETF 110)

What does it Take to Compress
Packet Distributions Efficiently?

10

Raw packet size distribution

● Produce flow markers with two operators
○ Quantization
○ Truncation

Quantized distribution
QL = 4 (24x compression)

Truncated distribution
Top-10 bins

In-network

traffic analysis

Up to 150x
size reduction

http://progress_bar_id

Diogo Barradas - coinrg (IETF 110)

Implementation of the Flow Marker Accumulator
Typical Workflow for a Newbie in P4

1. Implementation in a software simulator
○ Environment: bmv2 P4-reference software switch

■ Open-source
■ Very flexible target architecture
■ Perfect for prototyping

○ Required software: P4 Tutorial VirtualBox image

11

2. Implementation in physical switching hardware
○ Environment: Barefoot Tofino ASIC

■ Proprietary SDE and documentation
■ Target-specific constraints
■ Real production networks

○ Required software: Intel P4 Studio SDE

http://progress_bar_id

Diogo Barradas - coinrg (IETF 110)

How are Flow Markers Collected in the Switch?

12

● Programmable packet parsing

● Match-action tables
○ Arranged in stages
○ Match some packet field
○ Change packet headers or metadata

In-network

traffic analysis

Feed-forward pipeline

Sequential computations
unrolled across stages

Resources are local
to each stage

http://progress_bar_id

Diogo Barradas - coinrg (IETF 110)

Performing Quantization in the
P4 bmv2 Behavioral Simulator

13

In-network

traffic analysis

Goal: Leverage as much
memory as possible to
store flow markers

action track_flow_1(bit<32> action_index, bit<32> flow_index) {
 bit<32> value;
 bit<32> binIndex = standard_metadata.packet_length >> binWidthShifts;

 bit<32> reg_grid_pos = flow_index << 6;
 reg_grid_pos = reg_grid_pos + (flow_index << 4);
 reg_grid_pos = reg_grid_pos + (flow_index << 3);
 reg_grid_pos = reg_grid_pos + (flow_index << 2);
 reg_grid_pos = reg_grid_pos + (flow_index << 1);
 reg_grid_pos = reg_grid_pos + binIndex;
 reg_grid0.read(value, reg_grid_pos);
 value = (action_index == 1) ? value+1 : value;
 reg_grid0.write(reg_grid_pos, value);
 }

Develop single action to:
a) Quantize packet size;
b) Compute reg. grid index;
c) Increment register cell

a)

b)

c)

Unfortunately...

This does not work in hardware!

This action includes too much complexity for one stage

http://progress_bar_id

Diogo Barradas - coinrg (IETF 110)

Restructuring the Quantization Code
for the Physical Hardware

14

Trade-off:
Action complexity vs Usable memory

Dependency on computations leads to
some memory waste

Split computation among different stages:
Stage 1: Quantize packet size;
Stage 2: Compute register grid index;
Stage 3: Increment register cell

http://progress_bar_id

Diogo Barradas - coinrg (IETF 110)

New Version of Quantization Performs
Only Simple Actions in Each Stage

15

action quantization_act(){

meta.binIndex = (bit<32>)

(standard_metadata.packet_length >> BIN_WIDTH_SHIFT);

}

action set_flow_data(bit<32> flow_offset) {

meta.rg_cell_offset = flow_offset + meta.binIndex;

 }

action reg_grid0_action() {

 bit<16> value;

 reg_grid0.read(value, meta.rg_cell_offset);

 value = value+1;

 reg_grid0.write(meta.rg_cell_offset, value);

 }

Stage 1:

Stage x:

Stage x+1:

Quantize packet size

Compute register grid
index to increment

Increment register cell

How can we implement truncation?

http://progress_bar_id

Diogo Barradas - coinrg (IETF 110)

Bins to Truncate are Selected in an Offline Fashion

16

Quantized distribution
QL = 4 (24x compression)

Truncated distribution
Top-10 bins

Recall...
Table-assisted

truncation design

Table defined in the control plane

Match on quantized packets of interest

http://progress_bar_id

Diogo Barradas - coinrg (IETF 110) 17

In-network

traffic analysis

Flow table

Register grids
(memory
clusters)

Control Plane

indexes flow

sets flow offset
in register grid

Match Count

Truncation Requires Only an Additional Pipeline Stage

Use an additional stage to:
Stage 2: Truncate quantized packet size;

Modify further stages to:
Stage 4: Compute register grid index;

http://progress_bar_id

Diogo Barradas - coinrg (IETF 110)

How to Automatically Choose Quant/Trunc Parameters?

18

● Large configuration space

○ Quantization x Truncation

● Leverage Bayesian Optimization

● Automatic Profiler with three criteria
○ Smaller marker for target accuracy
○ Best accuracy given a size constraint
○ Compromise between marker size and accuracy

Saves many hours of testing
sub-optimal configurations

http://progress_bar_id

Diogo Barradas - coinrg (IETF 110)

Evaluation

● Scalability in three ML-based security tasks
○ Covert Channel Detection
○ Website Fingerprinting
○ Botnet Detection

● Performance of FlowLens’s profiler

● Resources consumption
○ CPU usage (control plane)
○ ASIC usage (data plane)

19

http://progress_bar_id

Diogo Barradas - coinrg (IETF 110)

ML-based Security Tasks

● Detection of Covert Channels
○ Effective Detection of Multimedia Protocol Tunneling using

Machine Learning. Barradas et al., USENIX Security, 2018

● Website Fingerprinting
○ Website fingerprinting: attacking popular privacy enhancing

technologies with the multinomial naïve-bayes classifier.
Herrmann et al., CCS Workshops, 2009

● Detection of Botnet Traffic
○ PeerShark: flow-clustering and conversation-generation for

malicious peer-to-peer traffic identification. Narang et al.,
EURASIP Journal on Information Security, 2014

20

http://progress_bar_id

Diogo Barradas - coinrg (IETF 110) 21

● Scalability in three use cases
○ Covert Channel Detection
○ Website Fingerprinting
○ Botnet Detection

Check the paper for our
comprehensive evaluation!

Scalability Gains Overview

Use Case Scaling (# flows) Performance Loss

Covert Channels 150x -3% accuracy

Website Fingerprinting 32x -2% accuracy

Botnet Detection 34x -3% recall
-2% precision

http://progress_bar_id

Diogo Barradas - coinrg (IETF 110)

FlowLens Scales the Amount of
Inspected Flows and Retains Acc.

22

● Covert Channel Detection [Barradas et al.]
○ Legitimate / Modified Skype flows
○ Packet lengths + XGBoost

1500
3000

188
376

375
750

94
188

47
94

24
48

12
24

6
12

Bins
Memory (B) Full information = 3000B

Detection: 96% accuracy

Quant (QL=4) = 188B
Detection: 92% accuracy

16x increase in measured flows

C
ov

er
t C

ha
nn

el

http://progress_bar_id

Diogo Barradas - coinrg (IETF 110) 23

Full information = 3000B
Detection: 96% accuracy

150x increase in measured flows

Quant (QL=4) + Trunc (top-10) = 20B
Detection: 93% accuracy

● Covert Channel Detection [Barradas et al.]
○ Legitimate / Modified Skype flows
○ Packet lengths + XGBoost

(Top-N)

FlowLens Scales the Amount of
Inspected Flows and Retains Acc.

C
ov

er
t C

ha
nn

el

Quant (QL = 4)

http://progress_bar_id

Diogo Barradas - coinrg (IETF 110)

FlowLens’ Profiler Finds Good
Quant. / Trunc. Parameters

24

● Automatic profiling (Covert Channel):
○ 48 valid parameter combinations
○ Set max exploration of 10 combinations

Rank (accuracy-wise) Combination

#1 (QL = 2, Top-n = all) = 0.960

#2 (QL = 3, Top-n = 50) = 0.951

#3 (QL = 0, Top-n = 30) = 0.947

Output (QL = 3, Top-n = 10) = 0.944

Optimize for a reasonable
Size vs Accuracy trade-off

http://progress_bar_id

Diogo Barradas - coinrg (IETF 110)

FlowLens Imposes a Small Overhead on the Switch

25

● ASIC usage (Flow Marker Accumulator):

● CPU usage (ML component):
○ Botnet detection (our largest model)
○ 140MB out of 32GB RAM
○ 5.6MB storage
○ ~200 μs per prediction

Supports the concurrent execution
of other forwarding behaviors

Supports flow classification in
the control plane

Computational Memory

eMatch xBar Gateway VLIW TCAM SRAM

8.46% 5.21% 3.39% 0.00% 38.54%

http://progress_bar_id

Diogo Barradas - coinrg (IETF 110)

Our Experimentation Artifacts are Publicly Available

26

Code available in Github!
https://github.com/dmbb/flowlens

● P4 implementation of the Flow Marker Accumulator

● Testbed for flow marker-enabled classification
○ Includes adaptations for the 3 ML-based tasks covered in this talk

http://progress_bar_id

Diogo Barradas - coinrg (IETF 110)

Conclusions

27

● FlowLens: First traffic analysis system for generic ML-based security
applications in programmable switches

● Collects compressed packet distributions, ensuring:
○ Classification accuracy
○ Small memory footprint

● Classifies flows directly on the switch
○ Saves communication, compute, and storage costs

Thank You!
https://web.ist.utl.pt/diogo.barradas

http://progress_bar_id

Diogo Barradas - coinrg (IETF 110) 28

● Do you have a “killer app” for FlowLens that you’d like to share?

● Have you deployed P4 code in the Tofino? What difficulties did you face?

● Which data structures have you implemented in switching devices?

● Have you implemented some other kind of ML-based framework in
programmable switches?

● Have you tested your own P4 programs in a distributed setting?
○ Like a Tofino-powered PlanetLab?

Discussion

http://progress_bar_id

