Data management over geodistributed edge computing infrastructure

Embedded Pervasive Lab Georgia Tech

Novel applications necessitate edge computing

- 1. Collaborative driving assistance
- 2. Distributed camera networks
- 3. Autonomous drone swarms
- 4. Cognitive assistance

Application requirements

- Geo-distributed clients
- Require low-latency access to compute services
- High-data rate
- Continuous mobility

Source : Qiu, Hang, et al. "Avr: Augmented vehicular reality." Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services. 2018.

http://www.uasmagazine.com/ articles/2028/drone-swarmoperations-gaining-traction

Vision of edge computing

Open Networking Summit

- Dense geo-distribution
- Limited capacity at each site

- Continuum of resources
- Could be owned by multiple providers

What is data management?

- Situation-awareness applications generate large amounts of data
 - Can be reused by other apps (Nokia streaming as a service)
 - Stored for later retrieval (akin timeseries DBMS)
 - State of processing (as in Flink)
- Data exchange for coordination between connected entities
 - Drone swarms, collaborative driving

Contemporary solutions

Key-value stores

TIMESCALE

And InfluxDB

Requirements of data management solutions

- Low-latency & high-throughput access to data
- Agility to handle workload dynamism (e.g. client mobility)
- Expose well-known semantics to clients

Peculiar challenges of edge computing infrastructures

Peculiar challenges of edge computing infrastructures

Heterogeneous topology

Dense geo-distribution

Typical data-distribution is topology-agnostic

Source :

http://distributeddatastore.blogspot.com/2015/08/cassan dra-replication.html

Peculiar challenges of edge computing infrastructures

Heterogeneous topology

Dense geo-distribution Typical data-distribution is topology-agnostic

> **Coarse-grained geodistribution support**

Client mobility

No support for monitoring client mobility

Edge-friendly data management solutions

We present two systems that meet the above requirements of edge-friendly data management systems

- 1. Distributed spatio-temporal data store
- 2. Distributed publish-subscribe system

In both cases, data mgmt nodes are deployed on multiple edge sites

DataFog : geo-distributed spatio-temporal K-V store

- User interface
 - { K1 : V1, K2 : V2, ...,
 loc : (lat, lng),
 timestamp : ts
- Assumption : Situation-awareness applications
 Low-latency access to data is required by clients in proximity to the location of data-item

Source of latency in geo-distributed key-value stores

Location-based data partitioning

- Objective : Keep data close to potential users
 - Smart-car interested in congestion information of the same city
- Use of spatial attributes to form data-item's partition key
 - Partition key is used for distributing data items

Tradeoff between latency and fault tolerance

• Utilize spatio-temporal locality in queries

- E.g. smart car interested in recent events in its vicinity
- Provide consistent access to spatio-temporally relevant items
- Relevance specified by developer
 - Area-of-interest
 - Specified in terms of geographical distance
- Maintain two types of replicas
 - In-vicinity : Kept strongly consistent
 ⇒ Low latency access
 - Remote : Eventually consistent
 - ⇒ Provide fault-tolerance

Area-of-interest size specified by developer

Performance improvements by locality optimizations

• Infrastructure

- o 4 local nodes within Atlanta, US
- Variable no. of remote nodes in USA
- Replication factor = 3
- Emulation using Containernet
- Query : select all vehicle detections of vehicle X within a 5 kilometre radius that happened less than 10 minutes ago
- Increasing scale of data store results in higher query latencies
 - Data is stored on remote DB nodes
 - For < 3 remote nodes
 - At least 1 (out of 3 total) replicas is local

Inter-city latency estimated using

WAN Latency Estimator (https://wintelguy.com/wanlat.html)

ePulsar : Topic-based publish-subscribe system

- Geo-distributed publish-subscribe system
- Follows similar interface as Kafka and Pulsar
 - Producer clients publish to topics
 - Consumer clients consume from topics
 - Brokers host topics

Source of latency in publish-subscribe systems

- Broker selection : topic → broker
- Broker selection done using consistent hashing
 - Network topology is not taken into account
- Results in high client-broker network latency

ePulsar's contribution : edge-friendly control-plane

- 1. Scalable client-broker latency estimation
 - a. Network coordinates protocol
- 2. Latency-aware adaptive broker selection
 - a. Aim to minimize worst-case end-toend latency
 - b. Continuous monitoring of broker and clients' network coordinates

Scalable client-broker latency estimation

- Vivaldi network coordinate agent runs on each pub-sub entity
 - Brokers
 - Clients
 - We use Serf service orchestration tool to provide network coordinates

Scalable client-broker latency estimation

- Vivaldi network coordinate agent runs on each pub-sub entity
 - Brokers
 - Clients
 - We use Serf service orchestration tool to provide network coordinates

Scalable client-broker latency estimation

- Brokers report monitoring data to control-plane per-topic
 - Worst-case end-to-end latency
 - Aggregate of clients' network coordinates
 - Traffic load (message rate, size)

ePulsar performance

- UAV swarm scenario
- Topic 1 : Leader UAV → follower
- Topic 2 : Follower → Leader
- 8 swarms each with 8 UAVs

- City-scale edge infrastructure
 - Multiple sites connected via backbone
- Each swarm moves independently
 - Following Random Waypoint Model

Conclusion

- Data management at edge poses peculiar challenges
- We design edge-friendly data mgmt solutions
 - Leverage high-performance data-plane of cloud-based systems
 - Implement edge-friendly control-plane
- We show main design decisions for two kinds of systems
 - Key-value stores
 - Publish-subscribe systems

References

- 1. Datafog: Towards a holistic data management platform for the iot age at the network edge. Harshit Gupta, Zhuangdi Xu, and Umakishore Ramachandran USENIX Workshop on Hot Topics in Edge Computing (HotEdge 18) 2018
- Fogstore: A geo-distributed key-value store guaranteeing low latency for strongly consistent access. Harshit Gupta and Umakishore Ramachandran
 12th ACM International Conference on Distributed and Event-based Systems (DEBS) 2018
- STTR: A System for Tracking All Vehicles All the Time At the Edge of the Network Zhuangdi Xu, Harshit Gupta and Umakishore Ramachandran 12th ACM International Conference on Distributed and Event-based Systems (DEBS) 2018
- 4. [Under review] ePulsar: Control Plane for Publish-Subscribe Systems on Geo-Distributed Edge Infrastructure