
1

AEAD LIMITS

SEC PROTOCOL

Limbo Queen by Dave Hogg https://www.flickr.com/photos/davehogg/873564673
Creative Commons Attribution 2.0 Generic (CC BY 2.0) https://creativecommons.org/licenses/by/2.0/

IETF 110
John Preuß Mattsson

https://www.flickr.com/photos/davehogg/873564673
https://creativecommons.org/licenses/by/2.0/

Usage Limits on AEAD Algorithms Overview
— AEAD limits have recently been discussed for TLS, DTLS, QUIC, and OSCORE:

— https://datatracker.ietf.org/doc/draft-irtf-cfrg-aead-limits/
— https://datatracker.ietf.org/doc/rfc8446/
— https://datatracker.ietf.org/doc/draft-ietf-tls-rfc8446bis/
— https://datatracker.ietf.org/doc/draft-ietf-tls-dtls13/
— https://datatracker.ietf.org/doc/draft-ietf-quic-tls/
— https://datatracker.ietf.org/doc/draft-hoeglund-core-oscore-key-limits/

— Use mathematical single-key and multi-key inequalities for CA (Confidentiality Advantage) and IA (Integrity
Advantage) to calculate limits for:
— 𝑣 the number of attacker forgery attempts (failed AEAD decryption invocations)
— 𝑞 the number of protected messages (AEAD encryption invocations)
— 𝑙 the maximum length of each message (in blocks)

— Rekeying must be done before the 𝑣 and 𝑞 limits are met.

— If done correctly, rekeying gives also forward secrecy, which limits the impact of key compromise.
— Rekeying with (EC)DHE gives additional protection by forcing attackers to keep being active.

2

https://datatracker.ietf.org/doc/draft-irtf-cfrg-aead-limits/
https://datatracker.ietf.org/doc/draft-ietf-tls-dtls13/
https://datatracker.ietf.org/doc/draft-ietf-tls-dtls13/
https://datatracker.ietf.org/doc/draft-ietf-tls-dtls13/
https://datatracker.ietf.org/doc/draft-ietf-quic-tls/
https://datatracker.ietf.org/doc/draft-hoeglund-core-oscore-key-limits/

The AEAD limits work consists of 4 steps

3

Mathematical inqualities

IAKEY ≤ 2 𝑣 (𝑙 + 1) / 2128

Security protocol counters for 𝑣 and 𝑞
and mechanisms for rekeying

AEAD limits for 𝑞 and 𝑣

Process for how to calucate limits
based on the inequalites

Mostly Nice!

Very Nice!

Mostly Nice!

Can be improvedCA ≤ 2-60 and IA ≤ 2-57

Note that these are inequalities,
they may not be tight upper
bounds and therefore describe
worst case.

Note that the process itself and the CA and IA limits are subjective choices.

Analysis of the inequalities (single-key)

4

— The inequalities for AES-GCM [AEBounds] and AES-CCM [CCM-ANALYSIS] assumes that AES is a PRP
(Pseudo-Random Permutation). Gordon Procter [ChaCha20Poly1305Bounds] assumes ChaCha20 is a
PRF (Pseudo-Random Function).

— The inequality CA ≤ 𝑣 𝑙 / 2103 used in DTLS, TLS, QUIC, CFRG does ChaCha20 great injustice. This would
suggest that the ChaCha20 stream cipher provides much worse confidentiality than AES-CTR for small
𝑞, which is not true.

— We recommend treating ChaCha20 as a PRF similar to the way AES is treated as a PRP which would
imply CA = 0 for ChaCha20.

— It should be noted that CA and IA are practically very different:
— CA is typically used for an offline attack, while IA is typically used for online attacks.
— IA is directly related to a practical attack (forgery) while CA is more theoretical (distinguishing)

and might not be directly related with any practical attack.

Analysis of the suggested ”calculating limits” step

5

— Current suggested process is to set limit for CA and IA per key and based on the inequalities calculate
limits for 𝑞 and 𝑣. TLS, DTLS and QUIC use approximately CA ≤ 2-60 and IA ≤ 2-57.

— This mostly leads to practically usable limits that improves security. The process do however also give
strange and misleading results.

— The suggested process lead to the recommendation that the ideal MAC needs to be rekeyed. This does
not make sense and does of course not improve security. The suggested process suggests that the ideal
64-bit MAC and CCM_8 needs to be rekeyed extremely often. DTLS 1.3 more of less forbids CCM_8 due
to the rekeying requirement. For low 𝑣 and 𝑞, CCM_8 behaves very close to the ideal 64-bit MAC.

— The suggested process misleadingly gives the idea that frequent rekeying can keep security high.
— While CA for the whole connection is bounded, IA for the whole connection is unbounded.
— For some of the advantages (AES-GCM IA, ChaCha20-Poly1305 CA and IA) rekeying it not shown

to lower advantages or security levels at all.

Linear and superlinear inequalities
It is easy to see from the inequalities if rekeying improves security for the connection. Superlinear equations e.g. (v + q)2

needs to be rekeyed before the security level gets to low.

— ChaCha20-Poly1305 IA

— AES-GCM IA

— AES-CCM IA

— AES-CCM_8 IA

— ChaCha20-Poly1305 CA

— AES-GCM CA

— AES-CCM CA
6

IA ≤ v · l / 2127

IA ≤ v · l / 2103

IA ≤ v / 2128 + l2 (v + q)2 / 2126

IA ≤ v / 264 + l2 (v + q)2 / 2126

CA ≤ (l + q)2 / 2129

CA = 0

CA ≤ l2 · q2 / 2126

Rekeying does not improve connection advantage

Rekeying does not improve connection advantage

Rekeying does not improve connection advantage

Rekeying does improve connection advantage

Rekeying does improve connection advantage

Rekeying does improve connection advantage*

Rekeying does improve connection advantage*

Analysis of the suggested ”calculating limits” step

— It is trivial to see that rekeying limits CA and IA per key. But with the attacker cost measured in encryption or
decryption queries, rekeying might actually surprisingly increase IA for the whole connection.

— The limits 𝑞 = 223 and 𝑙 = 210 makes CCM_8 deviate from an ideal MAC also for small values of 𝑣. An
application/protocol using CCM_8 should probably chose smaller values, e.g. 𝑞 = 220 and 𝑙 = 28. With these values
CCM_8 performs like an ideal 64-bit MAC to until 𝑣 = 235.

— The process of limiting CA and IA per key does not seem like the right thing to do for a security protocol where each
connection has many keys, communication between two parties can use many connections, and adversaries can
often trick the parties to tear down the old connection and set up a new connection.

— An easier process seems to be to just calculate the security levels (attacker cost / advantage) and put limits on the
security level for distinguishing and forgery. The security level is minimized over all possible adversaries. This seems
to avoid the misleading results of the currently suggested process (rekeying ideal MAC, rekeying gives arbitrary small
CA and IA per key, and rekeying increases IA for the connection).

— The suggested process has lead to quite arbitrary but practically useful limits for (D)TLS and QUIC
— People are taking the specific process and exact limits a bit too serious.
— We don’t think the process as currently specified should be an IETF/IRTF recommendation.

7

Lower bounds for security levels (in bits)

Note that all the the CA and IA Formulas
are inequalities.

Plots show lower bounds for the security
level.

𝑙 = 210 𝑞 = 223

𝑙 = 26 𝑞 = 220

𝑙 = 26

𝑙 = 210

Need to rekey
before security
level gets too low

For low 𝑣, security level
is dominated by 𝑞 and 𝑙

Lowering maximal
values for 𝑞 and 𝑙
increases security
level.

Lower bounds CCM integrity security level (in bits)

𝑙 = 26

𝑙 = 210

𝑙 = 210 𝑞 = 223

𝑙 = 26 𝑞 = 220

If attacker cost is measured in only decryption
queries or only encryption queries, rekeying
can give higher advantage (but not a lower
security level).

An optimal attacker do one forgery per key.

Single key

Multi key

Attacker cost metric 𝑣
Attacker cost metric 𝑣 + 𝑞

Security level is
the minimized
over all allowed 𝑣

Lower bounds CCM_8 integrity security level (in bits)

𝑙 = 210 𝑞 = 223 𝑙 = 28 𝑞 = 220

𝑙 = 26 𝑞 = 220

𝑙 = 210 𝑞 = 223

For low 𝑣,
security
level is
dominated
by 𝑞 and 𝑙

CCM_8 behaves very much
like the ideal 64-bit MAC.

Lowering maximal
values for 𝑞 and 𝑙
removes deviation
for low 𝑣.

We recommend
OSCORE to do so

Need to rekey
before security
level gets too low

Suggestions for (OS)CORE
— Security protocol counters for 𝑣 and 𝑞 and mechanisms for rekeying are necessary.

— Frequent rekeying with forward secrecy limits the impact of key compromise, this might be
even more important that the AEAD advantages.

— Use CA = 0 for ChaCha20-Poly1305. Rekeying for linear inequalities (ChaCha20-Poly1305
CA/IA and AES-GCM IA) does not improve security level or the advantage for the connection.

— CCM_8 is a very close to a perfect 64-bit MAC for low values of 𝑞 and 𝑣. No problem at all to
continue using CCM_8 as long as 64-bit forgery probability is acceptable.

— 64-bit forgery probability is definitely acceptable in constrained IoT. To break 64-bit security
against online brute force an attacker would on average have to send 4.3 billion messages per
second for 68 years, which is infeasible in constrained IoT radio technologies.

— Consider using smaller limits than 𝑞 = 223 and 𝑙 = 210, this improves security for AES-GCM CA
and AES-CCM(_8) CA/IA.

— The current process and limits should be taken with a pinch of salt. Suggestions for (OS)CORE:
— Use a process that puts limits on the security level for distinguishing and forgery.
— 𝑞, 𝑣 = 220 for AES-GCM CA and AES-CCM CA/IA, 𝑣 = 230 for CCM_8 IA, not limit for other?
— 𝑞, 𝑣 = 220 for all algorithms?
— 𝑙 = 28 (4 kB) ? 11

