Observe Notifications as
CoAP Multicast Responses

draft-tiloca-core-observe-multicast-notifications-05

Marco Tiloca, RISE
Rikard Hoglund, RISE
Christian Amsiss
Francesca Palombini, Ericsson

IETF 110, CoRE WG, March 08th, 2021

Recap

» Observe notifications as multicast responses
— Many clients observe the same resource on a server S
— Improved performance due to multicast delivery
— Multicast responses are not defined yet --- Token binding, security, ...

» Example of relevant use case
— Pub-Sub scenario, also discussed at IETF 104 V
! Broker

~

— Many subscribers to a same topic on the Broker
— Better performance
— Subscribers can remain clients only

Single notification response over multicast
IETF 110 | CORE WG | 2021-03-08 | Page 2

How

» Define multicast responses, in particular Observe notifications

» Token space managed by the server
— The Token space belongs to the group (clients)
— The group entrusts the management to the server
— All clients in a group observation use the same Token value

» Group OSCORE to protect multicast notifications
— The server aligns all clients of an observation on a same external _aad
— All notifications for a resource are protected with that external _aad

IETF 110 | CORE WG | 2021-03-08 | Page 3

Phantom request and error response

» The server requests the observation on its own, e.g. when:
1. Afirst traditional registration request comes from a first client
2. Some threshold is crossed — clients can be shifted to a group observation

» Consensus on Token & external _aad , by using a phantom observation request
— Generated inside the server, it does not hit the wire
— Like if sent by the group, from the multicast IP address of the group
— Multicast notifications are responses to this phantom request

» The server sends to clients a 5.03 error response with:
— Transport-specific information, e.g. the IP multicast address where notifications are sent to
— The serialization of the phantom observation request
— The serialization of the latest multicast notification (optional)

IETF 110 | CoRE WG | 2021-03-08 | Page 4

Updates from -05

> New payload format for the informative response

informative_response_payload = ({
1 => array, ; ’'tp_info’, i.e. transport-specific information
2 => bstr, ; ’'ph_req’ (transport-independent information)

?7 3 => bstr ; "last_notif’ (transport-independent information)

}

» The same ‘tp_info’ content applies to both ‘ph_req’ and ‘last_notif’

» ‘ph_req’ - Serialization of the phantom request

» ‘last_notif’ - Serialization of latest sent multicast notification
— Now only optional to include

IETF 110 | CORE WG | 2021-03-08 | Page 5

Updates from -05

> New payload format for the informative response

informative_response_payload = ({

{ 1 => array, ; ’'tp_info’, i.e. transport-specific information|
2 => bstr, ; ’'ph_req’ (transport-independent information)
? 3 => bstr "last_notif’ (transport-independent information)
}
tp_info = [tp_info = [
srv_addr ; Addressing information of the server tp_id %A, ; UDP as transport protocol
? req_info ; Request data extension srv_host : #6.260(bstr), ; Src. address of multicast notifications
] srv_port : uint, ; Src. port of multicast notifications
token : bstr, ; Token of the phantom request and
srv_addr = (; associated multicast notifications
tp_id : int, ; Identifier of the used transport protocol cli_addr : #6.260(bstr), ; Dst. address of multicast notifications
+ elements ; Number, format and encoding ? cli_port : uint ; Dst. port of multicast notifications
; based on the value of ’tp_id’]

)

req_info = (

+ elements

; Number, format and encoding based on
; the value of ’'tp_id’ in ’srv_addr’

Concrete encoding for this document, where ‘tp_id’ =1 (UDP)

» Defined new |IANA registry, for ‘tp_id’ values, and formats of ‘srv_addr’ and ‘req_info’

» Format reused for the Response-Forwarding option in draft-tiloca-core-groupcomm-proxy

IETF 110 | CORE WG | 2021-03-08 | Page 6

Updates from -05

» There is no client-server negotiation of multicast notification service
— The proposed mechanisms is used in situations where:
Individual notifications are not feasible; or
Individual notifications are not preferred beyond a certain number of observers
— Future applications can define negotiation mechanisms if need be

» Signaling of multicast notification service
— A web link can include the target attribute “grp_obs”, as a simple hint

» Revised processing in the presence of forward proxies
— Improved mechanics without and with Group OSCORE (Section 9 and Section 10)
— Updated examples in Appendix E and Appendix F

IETF 110 | CoRE WG | 2021-03-08 | Page 7

Updates from -05

» Appendix C — OSCORE group self-managed by the server
— The client’s observation request works as a joining request
— The informative response includes also group keying material
— This mirrors the case where the client joins an OSCORE group only as silent server
— Not suitable when backward security and forward security are required

» Appendix D — Phantom request as deterministic request
— Each client builds the same phantom request, see draft-amsuess-core-cachable-oscore
— No need to include the phantom request in the 'ph_req’ of informative responses

IETF 110 | CORE WG | 2021-03-08 | Page 8

Summary

» Latest additions
— New flexible and extensible encoding of the informative response
— No negotiation with clients; just signaling of support for group observations
— Revised processing with proxies; updated examples in Appendix E and F
— New Appendix C: OSCORE group self-managed by the server
— New Appendix D: phantom request as deterministic request

> Next steps
— Case with reverse proxy — Mechanics and example

— Case with deterministic request and proxy — Mechanics and example

» Ready for WG adoption ?

IETF 110 | CORE WG | 2021-03-08 | Page 9

Thank youl!

Comments/questions?

https://qgitlab.com/crimson84/draft-tiloca-core-observe-responses-multicast

https://gitlab.com/crimson84/draft-tiloca-core-observe-responses-multicast
https://gitlab.com/crimson84/draft-tiloca-core-observe-responses-multicast
https://gitlab.com/crimson84/draft-tiloca-core-observe-responses-multicast
https://gitlab.com/crimson84/draft-tiloca-core-observe-responses-multicast
https://gitlab.com/crimson84/draft-tiloca-core-observe-responses-multicast
https://gitlab.com/crimson84/draft-tiloca-core-observe-responses-multicast
https://gitlab.com/crimson84/draft-tiloca-core-observe-responses-multicast
https://gitlab.com/crimson84/draft-tiloca-core-observe-responses-multicast
https://gitlab.com/crimson84/draft-tiloca-core-observe-responses-multicast
https://gitlab.com/crimson84/draft-tiloca-core-observe-responses-multicast
https://gitlab.com/crimson84/draft-tiloca-core-observe-responses-multicast

Backup

Server side

1. Build a GET phantom request; Observe option setto O

2. Choose a value T, from the Token space for messages ...
— ... coming from the multicast IP address and addressed to target resource

3. Process the phantom request
— As coming from the group and its IP multicast address
— As addressed to the target resource

4. Hereafter, use T as token value for the group observation

5. Store the phantom request, store (not send) reply for last_notif

IETF 110 | CoRE WG | 2021-03-08 | Page 12

Interaction with clients

) The server sends to new/shifted clients an error response with
— ‘tp_info’: transport-specific information
‘srv_addr’ and ‘srv_port’: destination address/port of the phantom request
‘token’: the selected Token value T, used for ‘ph_req’ and ‘last_notif’
‘cli_addr’ and ‘cli_port’: source address/port of the phantom request
— ‘ph_req’: serialization of the phantom request
— ‘last_notif’: serialization of the latest sent notification for the target resource

) When the value of the target resource changes:
— The server sends an Observe notification to the IP multicast address ‘cli_addr’
— The notification has the Token value T of the phantom request

) When getting the error response, a client:
— Configures an observation for an endpoint associated to the multicast IP address
— Accepts observe notifications with Token value T, sent to that multicast IP address

IETF 110 | CoORE WG | 2021-03-08 | Page 13

C1 registration

GET

Token: 0Ox4a
Observe: 0 (Register)
<Other options>

(S allocates the available Token value 0x7b .)

(S sends to itself a phantom observation request| PH_REQ
as coming from the IP multicast address|GRP_ADDR] .)

GET

[Token: 0x7b |
Observe: 0 (Register)
<Other options>

(S creates a group observation of /r .)

(S increments the observer counter
for the group observation of /r .)

IETF 110 | CoRE WG | 2021-03-08 | Page 14

/xr

C1 registration

5.03

Token: 0Ox4da

Content-Format: application/informative-response+cbor
<Other options>

Payload: {
tp_info H 1, bstr (SRV_ADDR), SRV_PORT
, bstr (GRP_ADDR), (GRP_PORT],
ph_req :[bstr (0x01 | OPT),

last_notif : bstr(0x45 | OPT | Oxff | PAYLOAD)
}

IETF 110 | CORE WG | 2021-03-08 | Page 15

C2 registration

C 2% = ommmmmmrmmoTToTeEs
GET
Token: 0x01
Observe: 0 (Register)

<Other options>

5.03

Token: 0x01

<Other options>

5 [Unicast]

(S increments the observer counter
for the group observation of /r

Content-Format: application/informative-response+cbor

SRV_PORT

bstr (GRP_ADDR)|, | GRP_PORT],

}

IETF 110 | CoORE WG | 2021-03-08 | Page 16

Payload: {
tp_info : [1, bstr (SRV_ADDR),
0x7
ph_req :[bstr(0x01 OPT)),
last_notif bstr (0x45

OPT | Oxff | PAYLOAD)

(The value of the resource /r changes to "5678".)

-)

Multicast notification

T e [Multicast] ——————————————————
C .2 (Destination address/port: GRP_ADDR

2.05
| Token: 0x7b]

Observe: 11

Content-Format: application/cbor

<Other options>

Payload: : "5678"

» Same Token value of the Phantom Request

» Enforce binding between
— Every multicast notification for the target resource
— The (group) observation that each client takes part in

IETF 110 | CoRE WG | 2021-03-08 | Page 17

Security with Group OSCORE

» The phantom request is protected with Group OSCORE
— X : the Sender ID (‘kid’) of the Server in the OSCORE group
— vy : the current SN value (‘piv’) used by the Server in the OSCORE group
— Note: the Server consumes the value y and does not reuse it as SN in the group

» To secure/verify all multicast notifications, the OSCORE external _aad is built with:
— ‘req_kid’ = x
— ‘req_piv' =y

» The phantom request is still included in the informative response
— Each client retrieves x and y from the OSCORE option

IETF 110 | CoORE WG | 2021-03-08 | Page 18

Security with Group OSCORE

» In the error response, the server can optionally specify also:
— ‘join-uri’ : link to the Group Manager to join the OSCORE group

- MUST
— ‘sec-gp’ : name of the OSCORE group |
— ‘as-uri’ : link to the ACE Authorization Server associated to the Group Manager)
— ‘cs-alg’ : countersignature algorithm
— ‘cs-alg-crv’ : countersignature curve of the algorithm
— ‘cs-key-kty’ : countersignature key type Ay

— ‘cs-key-crv’ : countersignature curve of the key
— ‘cs-kenc’ : countersignature key encoding

— ‘alg’ : AEAD algorithm

— ‘hkdf’ : HKDF algorithm

IETF 110 | CoORE WG | 2021-03-08 | Page 19

C1 registration w/ security

o [Unicast w/ OSCORE] >8 /r
0.05 (FETCH)
Token: Ox4a

OSCORE: {kid: 1 ; piv: 101 ; ...}
<Other class U/I options>
Oxff

Encrypted_payload {
0x01 (GET),
Observe: 0 (Register),
<Other class E options>
}

(S allocates the available Token value 0x7b .)

(S sends to itself a phantom observation request|PH_REQ
as coming from the IP multicast address| GRP_ADDR] .)

> /r
[0.05 (FETCH \
OSCORE: id: 5 ; piv: 501 ;
kid context: 57ab2e; ...}

<Other class U/I options>
Oxff
Encrypted_payload {

0x01 (GET),

Observe: 0 (Register),

<Other class E options>
}

\\‘> <Counter signature> <")

(S steps SN_5 in the Group OSCORE Sec. Ctx : SN_5 <== 502)

-~

(S creates a group observation of /r .)

(S increments the observer counter
for the group observation of /r .)

IETF 110 | CoRE WG | 2021-03-08 | Page 20

C1 registration w/ securlty

C L S—mm——mmnmmomorT [Unicast w/ OSCORE] ———————————————~
2.05 (Content)
Token: 0x4a

OSCORE: {piwv: 301; ...}
<Other class U/I options>
Oxff

Encrypted_payload {
5.03 (Service Unavailable),
Content-Format: application/informative-response+cbor,
<Other class E options>,

Oxff,
CBOR_payload {
tp_info : [1, bstr (SRV_ADDR), SRV_PORT,

(0x7Y, [bstr (GRP_ADDR), (GRP_PORT]), l .)
ph_req : [bstr (0x05 [OPT | Oxff | PAYLOAD SIGN)’, 5: Sender ID (‘kid’) of S in the
last_notif : bstr(0x45 | OPT | Oxff | PAYLOAD | SIGN), OSCORE group
join_uri : "coap://myGM/ace-group/myGroup", . .
sec_gp : "myGroup" 501: Sequence Number of Sin

} the OSCORE group when S
} created the group observation

IETF 110 | CORE WG | 2021-03-08 | Page 21

C2 registration w/ security

}
IETF 110 | CoORE WG | 2021-03-08 | Page 22

2.05
Token:
OSCORE:
<Other class U/I options>
Oxff,

Encrypted_payload {

for the group observation of /r .)

[Unicast w/ OSCORE]

(Content)
0x01

{PIVE 4043 oeed

5.03 (Service Unavailable),
Content-Format: application/informative-response+cbor,
<Other class E options>,

2 [Unicast w/ OSCORE] - -———> S

0.05 (FETCH)
Token: 0x01
OSCORE: {kid: 2 ; piv: 201 ; ...}
<Other class U/I options>
Oxff
Encrypted_payload {

0x01 (GET),

Observe: 0 (Register),

<Other class E options>
}

(S increments the observer counter

/xr

5: Sender ID (‘kid’) of S in the
OSCORE group

501: Sequence Number of Sin

Oxff,

CBOR_payload { the OSCORE group when S
tp_info : [1, bstr (SRV_ADDR), SRV_PORT i

o e e, (en i, created the group observation

— . (bt (0x05 | OPT [Oxff | pavioan [ston® [@
last_notif : bstr (0x45 OPT Oxff PAYLOAD SIGN),
join_uri "coap://myGM/ace-group/myGroup",
sec_gp "myGroup"

Multicast notification w/ security

I i e [Multicast w/ Group OSCORE] ———————————- S
c 2 (Destination address/port: GRP_ADDR/|GRP_PORT))
2.05 (Content)
OSCORE: {kid: 5; piv: 502 ;
kid context: 57ab2e; ...}
<Other class U/I options>
Oxff

Encrypted_payload {
2.05 (Content),
Observe: 11,
Content-Format: application/cbor,
<Other class E options>,
Oxff,
CBOR_Payload : "5678"
}

<Counter signature>

> When encrypting and signing the multicast notification:
— The OSCORE external_aad has|‘reg_kid] =5 and|req_iv]= 501
— Same for all following notifications for the same resource

» Enforce secure binding between
— Every multicast notification for the target resource
— The (group) observation that each client takes part in

IETF 110 | CoRE WG | 2021-03-08 | Page 23

Support for intermediary proxies

» How it works
— The proxy (next to the server) directly listens to the IP multicast address
— The original Token of the phantom request has to match at the proxy
— The proxy forwards multicast notifications back to each client
The proxy uses the Token values offered by the clients

» Without end-to-end security (Section 9)
— The proxy can retrieve the phantom request from the informative response
— No need to forward the informative response back to the clients

» With end-to-end security (Section 10)
— The informative response is also protected with OSCORE or Group OSCORE
— The proxy cannot retrieve the phantom request from the informative response
— Each client has to explicitly provide the phantom request to the proxy

IETF 110 | CoRE WG | 2021-03-08 | Page 24

