
DANISH
IETF 110

March 12th 2021

Defining The Problem Space

2

IoT Ecosystem Challenges

Private PKI everywhere

Establishing trust across private PKI domains is challenging

No technical controls prevent naming collisions across PKI

Discovery API for CA and EE certs oftentimes proprietary

PKI over-consolidation to prevent naming collisions and ease trust challenges

Implied trust in decoupled applications because cert discovery is too difficult

3

IoT Ecosystem Challenges

Private PKI needs a broadly useful discovery mechanism

Specifically, we need a discovery mechanism which:
...works across private PKI (enabling mTLS authentication)
...works for async applications (object signing/encryption)
...prevents naming collisions
...makes credential rotation easier
...works well for constrained platforms

Create safe bridges between islands of trust

4

Islands Of Trust

CA bundle makes web PKI work well
Imagine the web without the browser CA bundle...

IoT typically uses private PKI for client identity
Web PKI for this use case brings unnecessary cost and complexity

Agreement on IoT roots of trust -> CA cert distribution or consolidation

Multiple CA certs invites naming collision, so consolidation is favored

Entire org on the same trust island, cross-org M2M is difficult

5

Suboptimal Information Flows

6

Suboptimal Information Flows (tromboning)

7

This is what we want:

Suboptimal Information Flows

8

Assumed Trust In Middleware

9

Proprietary certificate discovery protocols

10

Evaluating existing open identity systems

Looking at existing technologies:

Open standards

Ease of integration

Enable existing PKI authn methods to work better

Give transition to a better state a gradual adoption curve

11

Lens For Examining Identity Systems

How Accessible? Entire system integration

How widely-recognized? Name federation

How resistant to name collisions? Name ambiguity

How resistant to credential theft? Proof-of-Possession resilience

Level of effort for credential rotation? Proof-of-Possession hygiene

12

Traditional PKI

How Accessible? (API) Proprietary

How widely-recognized? Which PKI?

How resistant to name collisions? Only within CA

How resistant to credential theft? Hardware-supported

Level of effort for credential rotation? High

13

Blockchain and Public Key

How Accessible? (API) Standards emerging (DID)

How widely-recognized? Which blockchain?

How resistant to name collisions? Within same system

How resistant to credential theft? Hardware-supported

Level of effort for credential rotation? High

14

DNS+PKI

How Accessible? (API) Already in the OS

How widely-recognized? Only one DNS

How resistant to name collisions? Only one DNS

How resistant to credential theft? Hardware-supported

Level of effort for credential rotation? Low

15

DANE and LoRaWAN

16

LoRaWAN Architecture

3G, Ethernet NS

JS

AS

RGED

Backend
Network
Elements

17

DNS infrastructure usage in LoRaWAN

• For Over the Air Activation (OTAA)
• Purpose – ED Onboarding
• The NS uses the DNS infrastructure to find the JS based on the
JS identifier (JoinEUI) in the incoming Join-Request (JR) from the
ED

• For Roaming
• When the ED is roaming in a Visited Network (VN), the Visited NS
uses the NetID to identify the home network of the ED

18

LoRaWAN DNS hierarchy

lora-
alliance

“lora-alliance.org” -> Lora-Alliance Web Service

.

org net

netids joineuis

lorawan

“netids.lorawan.net” -> Lora-Alliance Roaming Service “joineuis.lorawan.net” -> Lora-Alliance OTAA Service

19

Provisioning JoinEUI and NetID in LoRaWAN

0x00005E100000002F

JoinEUI NetId

0x60050A

f.2.0.0.0.0.0.0.0.1.e.5.0.0.0.0.joineuis.lorawan.net

60050a.netids.lorawan.net

60050a.NETIDS.lorawan.net IN A 192.0.2.0.1

f.2.0.0.0.0.0.0.0.1.e.5.0.0.0.0. joineuis.lorawan.net. IN NS example.net

20

OTAA flow

JR

 Get IP address of the JS

 IP address of the JS

ED RG NS DNS

JR

JS

JR + NetID , DevAddr,
DLSettings,

RxDelay, CFList

JoinAns

JoinAccept

JoinAccept

21

Passive roaming flow

RJR

 Get IP address of the JS

 IP address of the JS
Get sNS Identifier of the DevEUI

NetID of DevEUI

Get IP address of sNS

IP address of sNS

ED

ProfileReq

Packet uplink
Packet uplink

Packet uplink

Packet downlink
Packet downlink

Packet downlink

ProfileAns

RG fNS sNS DNS JS

JR

JR
JR

JAns
JAns

JAccept
JAccept

22

Issues with the current setup (1/2)
ED RG NS AS JS

NwkKey

AppSKey

23

Issues with the current setup (2/2)
ED RG NS AS JS

24

25

Goal from DANISH

• Use DNS infrastructure and its security extensions
(DNSSEC/DANE) to

• Provide mutual authentication between the Backend Network
elements
• Evaluate End-to-End secured communication between the ED
and the backend network elements using asymmetric keys and
DNS infrastructure as PKI

26

Initial Work Areas

27

Background: TLS Server Authentication With DANE

DANE Primer:

● “DNS-based Authentication of Named Entities”: RFC 6698, 7671
● Uses DNSSEC to authenticate X.509 certificates and/or public keys

Today, DANE is defined primarily for authenticating the TLS server (in certain
applications)

● See also 7672 (DANE for SMTP Transport Security, and 7673 (DANE with
DNS SRV records)

28

_25._tcp.mail.protonmail.ch.7200 IN TLSA 3 1 1 (
 76BB66711DA416433CA890A5B2E5A0533C6006478F7D
 10A4469A947ACC8399E1)

_25._tcp.mail.protonmail.ch. 7200 IN RRSIG TLSA 8 5 1200 (
 20210302081502 20210131081502 6753 protonmail.ch.
 UVJuhvyEj..............)

29

 _25._tcp.mail.example.com. IN TLSA (
 3 1 1 d2abde240d7cd3ee6b4b28c54df034b9
 7983a1d16e8a410e4561cb106618e971)

port, protocol, domain name

 _25._tcp.mail.example.com. IN TLSA (
 3 1 1 d2abde240d7cd3ee6b4b28c54df034b9
 7983a1d16e8a410e4561cb106618e971)

data (hex encoded) associated with the
certificate or public key

 _25._tcp.mail.example.com. IN TLSA (
 3 1 1 d2abde240d7cd3ee6b4b28c54df034b9
 7983a1d16e8a410e4561cb106618e971)

Parameters: Usage, Selector, Matching-Type

Usage 0: PKIX-CA: CA Constraint
Usage 1: PKIX-EE: Service Cert Constraint
Usage 2: DANE-TA: Trust Anchor Assertion
Usage 3: DANE-EE: Domain Issued Certificate

Selector 0: Full Certificate
Selector 1: Public Key (could be raw)

Matching-Type 0: Full Content
Matching-Type 1: SHA-256 Hash
Matching-Type 2: SHA-512 Hash

 _25._tcp.mail.example.com. IN TLSA (
 3 1 1 d2abde240d7cd3ee6b4b28c54df034b9
 7983a1d16e8a410e4561cb106618e971)

Parameters: Usage, Selector, Matching-Type

Usage 0: PKIX-CA: CA Constraint
Usage 1: PKIX-EE: Service Cert Constraint
Usage 2: DANE-TA: Trust Anchor Assertion
Usage 3: DANE-EE: Domain Issued Certificate

Selector 0: Full Certificate
Selector 1: Public Key (could be raw)

Matching-Type 0: Full Content
Matching-Type 1: SHA-256 Hash
Matching-Type 2: SHA-512 Hash

data (hex encoded) associated with the
certificate or public keyport, protocol, domain name

DANE record specifies the SHA256 hash of the subject public key of the certificate that should
match the End-Entity certificate. Authenticated entirely in the DNS (no PKIX involved).

TLS Client Authentication with DANE

● Original drafts developed in mid 2015; refreshed late last year
○ TLS Client Authentication via DANE TLSA Records:

■ https://tools.ietf.org/html/draft-huque-dane-client-cert
○ TLS Extension to convey DANE Client Identity:

■ https://tools.ietf.org/html/draft-huque-tls-dane-clientid
● Target use cases: IOT & SMTP Transport Security

34

https://tools.ietf.org/html/draft-huque-dane-client-cert
https://tools.ietf.org/html/draft-huque-tls-dane-clientid

Protocol Summary

● Client has:
○ DNS domain name identity
○ A public/private key pair & a certificate binding the public key to the domain name
○ Corresponding DANE TLSA record published in DNS

●
● (D)TLS server

○ Sends Certificate Request message in handshake; extracts client identity from presented
certificate, constructs TLSA record; queries, and validates DANE TLSA response

35

Protocol Summary

● New TLS extension for conveying client’s identity
○ For signaling support for DANE TLS client authentication (empty extension if signal only)
○ For conveying client DNS identity when used with TLS raw public key auth (RFC 7250)
○ In TLS 1.3, this extension is carried in the (encrypted) Client Certificate message (in TLS 1.2 it

is carried in the first flight Client extension and has no provision for privacy protection)

36

Client DNS Naming Convention

Draft is not proscriptive, but proposes 2 naming formats that may be generally
suitable for many applications.

Format 1: Service specific client identity

_service.[client-domain-name]

e.g. _smtp-client.relay1.example.com

1st label identifies the application service name. The remaining labels are
composed of the client domain name. Allows the same client to have distinct
authentication credentials for distinct application services.

37

Client DNS Naming Convention

Format 2: IOT Device Identity

[deviceid]._device.[org-domain-name]

e.g.

a1b2c3._device.subdomain.example.net.

● a1b2c3: device identifier (could be multiple leftmost labels)
● _device: identity grouping label
● subdomain: organizational label (optional)
● example.net: organizational domain

38

sensor7._device.example.com. IN TLSA (
 3 1 2
 0f8b48ff5fd94117f21b6550aaee89c8
 d8adbc3f433c8e587a85a14e54667b25
 f4dcd8c4ae6162121ea9166984831b57
 b408534451fd1b9702f8de0532ecd03c)

39

40

 TLS CLIENT TLS SERVER
Key ^ ClientHello
Exch | + key_share*
 | + psk_key_exchange_modes*
 v + pre_shared_key* -------->
 ServerHello ^ Key
 + key_share* | Exch
 + pre_shared_key* v
 {EncryptedExtensions} ^ Server
 {CertificateRequest v Params
 *+DANE Client ID ext}
 {Certificate*} ^
 {CertificateVerify*} | Auth
 {Finished} v
 <-------- [Application Data*]
 ^ {Certificate
 +DANE Client ID ext]}
Auth | {CertificateVerify*}
 v {Finished} -------->

 [Verify Client w/ DANE]
 [TLS alert on failure]

 [Application Data] <-------> [Application Data]

41

Bridging the Gap

DANE requires DNSSEC, and that’s the endgame, but ..

DNSSEC is not universally deployed (yet). And we’d like to be able to use the
DANE, even if DNSSEC has not been deployed in the relevant pieces of the DNS
infrastructure.

And interim proposal to (securely) achieve that goal involves the specification of
an additional TLSA usage mode that allows the certificate data to be authenticated
solely with traditional PKIX.

42

TLS Mutual Authentication With DANE

Simplify PKI management tasks:
Certificate rotation happens via your own DNS.
Certificate rotation happens as frequently as desired, TTL is only delay.

Attribution for authenticating peer is straightforward (DNS hierarchy)

43

TLS Mutual Authentication With DANE

44

DANE for Certificate Discovery: PKIX-CD

Provide a transitional DANE mode en route to DNSSEC DANE

Two closely-related use cases:

Entity certificate discovery (object security)

Trust anchor certificate discovery (TLS client CA certificates)

45

DANE for Certificate Discovery: PKIX-CD

New certificate usage mode 4: PKIX-CD

Entity certificate is authenticated by a discoverable CA certificate

CA certificate discovery is authenticated by Web PKI

This is for domains which cannot yet adopt DNSSEC

46

DANE for Certificate Discovery: PKIX-CD

DANE TLSA record containing an x.509 certificate

abc._device.vendor.example IN TLSA 4 0 0 …………….

Breaking down the identity name:

abc: Device identifier
_device: Identity grouping label
vendor.example: Organizational domain

47

DANE for Certificate Discovery: PKIX-CD

Identity name components:
abc: Device identifier
_device: Identity grouping label
device: Identity type (remove underscore)
vendor.example: Organizational domain
authorityKeyID: Extracted from entity certificate

CA certificate URI pattern:
https://${ID_TYPE}.${ORG_DOMAIN}/.well-known/ca/${AKI}.pem

https://device.vendor.example/.well-known/ca/AA-BB-CC….pem

48

DANE for Certificate Discovery: PKIX-CD

Entity certificate >> abc._device.vendor.example

CA certificate >> https://device.vendor.example/.well-known/ca/AA-BB-CC….pem

Discovery protected by Web PKI, in the absence of DNSSEC

49

PKIX-CD: Caveats

Must ensure name alignment between DNS query and x.509 contents

Mitigation for same-domain impersonation

Must limit discovered CA certificates to their associated domains

Mitigation for cross-domain impersonation

Must ensure the uniqueness of distinguishedName in cached CA certificates

Mitigate TLS 1.3 confusion with trust chains (RFC 8446, sec 4.2.4)

50

PKIX-CD: Implementation remaining questions

Is the dNSName the best field to use in the certificate for name alignment?

Will underscores in this field cause friction with CAs issuing private PKI?

We could use otherName, but dNSName seems like a better fit.

Should x.509 nameConstraints (RFC5280) be required for CA certificates?

51

PKIX-CD: Object Security Use Case

Sender’s certificate discoverable in DNS

Message contains the sender’s DNS name

Message is signed by sender’s private key

Recipient uses sender’s DNS name to retrieve certificate from DNS

Sender’s signing CA cert discoverable at a URI relative to sender’s DNS name

Discovery of CA certificate protected by traditional Web PKI and TLS

52

PKIX-CD: Object Security Use Case

53

PKIX-CD: Object Security Use Case

54

PKIX-CD: Object Security Use Case

55

PKIX-CD: Object Security Use Case

56

PKIX-CD: Trust Anchor Discovery (for mTLS/PKI)

PKIX-CD process requires the discovery of entity and CA certs

Trust chain:
EE-Cert >> Private-CA-Cert >> TLS/WebPKI

Object security (message sign/encrypt) -> Retain EE-Cert

Trust anchor discovery (mTLS/PKI) -> Retain Private-CA-Cert

Note: Trust anchor discovery happens out-of-band, not a part of the TLS handshake.

57

Network Access Use Cases

58

PKIX-CD and EAP-TLS use case (CA cert discovery)

Desired behavior:
Use supplier-provisioned DANE identity for EAP-TLS
Avoid supplier lock-in

Challenges:
Onboarding all mfr CA certs is a manual process
Authz is complicated by different PKI naming conventions
Prevent cross-CA impersonation

With PKIX-CD and EAP-TLS:
RADIUS performs authz based on DNS name to ca cert mapping

59

PKIX-CD and EAP-TLS use case (CA cert discovery)

Supplier responsibility:
Publish TLSA records for devices, which contain authorityKeyID (AKI).
Publish authority server (https://device.vendor.example/.well-known/ca/${AKI}.pem)

Implementer responsibility:
Manage names of authorized identities in RADIUS
EAP-TLS server CA certificate installation on device

RADIUS automation:
Periodically update DANE_ID : AKI mappings
Periodic out-of-band CA cert sync

RADIUS AA:
Perform authn using traditional PKI
Perform authz based on DANE_ID : AKI mapping

60

PKIX-CD and EAP-TLS (CA cert discovery)

61

PKIX-CD and EAP-TLS (CA cert discovery)

62

PKIX-CD and EAP-TLS (CA cert discovery)

63

PKIX-CD and EAP-TLS (CA cert discovery)

64

DANE Client ID and EAP-TLS use case

Desired behavior:
Use supplier-provisioned DANE identity for EAP-TLS
Avoid supplier lock-in

Challenges:
Onboarding all mfr CA certs is a manual process
Authz is complicated by different PKI naming conventions
Prevent cross-CA impersonation

With DANE Client ID and EAP-TLS:
RADIUS performs authn/authz based on a list of allowed DNS names

65

DANE Client ID and EAP-TLS use case

Supplier responsibility:
Publish TLSA records for devices, which contain authorityKeyID (AKI).
Publish authority server (https://device.example.com/.well-known/ca/${AKI}.pem)

Implementer responsibility:
Manage names of authorized identities in RADIUS
RADIUS Server authentication via:

RADIUS server CA certificate installation on device
-or- tls-dnssec-chain-extension for DANE auth before network access is granted

RADIUS automation:
Periodically update DANE_ID : AKI mappings
Periodically sync discovered CA certs

RADIUS AA:
Perform authn/z using DANE traditional PKI
Perform authz based on DANE_ID : AKI mapping

66

DANE Client ID and EAP-TLS (DANE client auth)

67

DANE Client ID and EAP-TLS (DANE client auth)

68

DANE Client ID and EAP-TLS (DANE client auth)

69

DANE for EAP-TLS Summary

Safely enable mfr-supplied PKI identity for network access

Use with or without DNSSEC

PKIX-CD is a first step into DANE, using WebPKI for trust

DANE for client auth is simpler than PKIX-CD (DNSSEC makes things simpler!)

70

Ecosystem Interaction: mDNS and DANE

71

mDNS and DANE Use Case: Dash Cam Retention

Taxi service must retain #days of dash cam footage for insurance compliance

Constraints:
Cost of onboard storage for all cameras for #days too high
Cost of cellular bandwidth for video transmission too high
Local storage at taxi garage/offices preferred

Solution:
Flush video archives from car’s dash cam to office DVR:

Every day at end of shift
Using office WiFi
Video files are signed by dash cam’s private key

72

mDNS and DANE Use Case: Dash Cam Retention

73

mDNS and DANE Use Case: Dash Cam Retention

74

mDNS and DANE Use Case: Dash Cam Retention

75

mDNS and DANE Use Case: Dash Cam Retention

76

mDNS and DANE Use Case: Dash Cam Retention

77

mDNS and DANE Use Case: Dash Cam Retention

78

mDNS and DANE Use Case: Dash Cam Retention

79

Scope of Work

80

DANISH Core Objectives

DANE for Client Identity:

https://tools.ietf.org/html/draft-huque-tls-dane-clientid-04

https://tools.ietf.org/html/draft-huque-dane-client-cert-05

DANE for Certificate Discovery:

https://tools.ietf.org/html/draft-wilson-dane-pkix-cd-00.html

81

https://tools.ietf.org/html/draft-huque-tls-dane-clientid-04
https://tools.ietf.org/html/draft-huque-dane-client-cert-05
https://tools.ietf.org/html/draft-wilson-dane-pkix-cd-00.html

DANISH Peripheral Objectives

HTTP, MQTT, etc:
HTTP and PROXY protocol header standardization

Email ecosystem:
STARTTLS, IANA email auth parameters for DANE client ID

Object security:
JOSE/COSE updates for ‘x5u’ field usage

82

HTTP and PROXY protocol headers

HTTP proxy headers:
Need to convey the DANE client name
Suggest: X-Forwarded-DANE-Client-Id

TCP TLVs for PROXY protocol:
PP2_TYPE_SSL: contains PP2_SUBTYPE_SSL_CN for cert CN.
Suggest adding PP2_SUBTYPE_SSL_DANE for DANE DNS name

83

JOSE

JWS and JWE define x5u field for locating an x509 cert:
https://tools.ietf.org/html/rfc7515#section-4.1.5
https://tools.ietf.org/html/rfc7516#section-4.1.7

Currently:
Only PEM-formatted certificates
Only over HTTPS

Update:
Support DNS URI and DER encoding:

dns:abc._device.example.com?type=TLSA
OR dns://1.1.1.1/abc._device.example.com?type=TLSA

84

https://tools.ietf.org/html/rfc7515#section-4.1.5
https://tools.ietf.org/html/rfc7516#section-4.1.7

COSE

COSE defines x5u and x5u-sender fields for OOB discovery of x509 certs

Currently:
Only application/pkix-cert and application/pkcs7-mime media types

Update:
Support for application/dns media type

85

Eligible for Inclusion

86

SMIMEA Update

SMIMEA (RFC8162):
DANE for SMIME certificate discovery
Naming convention:

${LOCAL_PART_SHA}._smimecert.${DOMAIN}
Requires DNSSEC (https://tools.ietf.org/html/rfc8162#section-6)

Update:
Allow PKIX-CD for discovery of cert and chain.
Use PKIX-CD pattern:

https://smimecert.${DOMAIN}/.well-known/ca/${AKI}.pem

87

Uses of the TLS DNSSEC Chain Extension

https://tools.ietf.org/html/draft-dukhovni-tls-dnssec-chain-02

“The DANE Authentication Chain Extension for TLS”

Currently planned to be published through the Independent Submissions Editor
(ISE) channel.

But has potential applicability in the IOT space, e.g. for DANE TLS server
authentication in Network Access Authentication scenarios where the EAP-TLS
client has no initial access to the network to perform DNS queries, ...

88

https://tools.ietf.org/html/draft-dukhovni-tls-dnssec-chain-02

DANE for SIP Authentication

Some mention on mailing list, worth exploring further?

Possible outcomes:
Supplier-issued endpoint identity used for network auth
Supplier-issued endpoint identity used for SIP client authentication
Could PKIX-CD make RFC 5922 (domain certs for SIP) easier to implement?

89

Oauth2 mTLS Update

Oauth2 supports mutual TLS for authentication (https://tools.ietf.org/html/rfc8705)

The client_id is derived from information in the x509 certificate

The jwks_uri points to a JWKS doc (https://tools.ietf.org/html/rfc8705#section-2.2)

JWKS doc contains client certs

Update:
Add dane_uri for indicating TLSA records to be used for mTLS authentication

90

https://tools.ietf.org/html/rfc8705
https://tools.ietf.org/html/rfc8705#section-2.2

MLS Protocol

https://tools.ietf.org/html/draft-ietf-mls-protocol-11

Makes use of a Directory for public key distribution and discovery

Would DNS be a good fit as a directory for MLS?

91

https://tools.ietf.org/html/draft-ietf-mls-protocol-11

Appendix
DANE operational guidance:

https://tools.ietf.org/html/rfc7671

DANE for Client Identity:
https://tools.ietf.org/html/draft-huque-tls-dane-clientid-04
https://tools.ietf.org/html/draft-huque-dane-client-cert-05

DANE for certificate discovery:
https://github.com/ashdwilson/dane-pkix-cd

Well-Known URIs:
https://tools.ietf.org/html/rfc8615

TLS 1.3:
https://tools.ietf.org/html/rfc8446

JOSE:
https://datatracker.ietf.org/wg/jose/documents/

COSE:
https://datatracker.ietf.org/wg/cose/documents/

IANA Email Auth Parameters:
https://www.iana.org/assignments/email-auth/email-auth.xhtml

Internet X.509 PKI Certificate and CRL Profiles:
https://tools.ietf.org/html/rfc5280

DNSSEC Chain Extension:
https://tools.ietf.org/html/draft-dukhovni-tls-dnssec-chain-02

Multicast DNS:
https://tools.ietf.org/html/rfc6762

EAP-TLS:
https://tools.ietf.org/html/rfc5216

Proxy Headers:
https://tools.ietf.org/html/rfc7239
https://tools.ietf.org/html/draft-bdc-something-something-certificate-04
https://www.haproxy.com/blog/haproxy/proxy-protocol/

DANE for S/MIME:
https://tools.ietf.org/html/rfc8162

SIP Certificate-Based Authentication:
https://tools.ietf.org/html/rfc5922

Oauth2:
https://tools.ietf.org/html/rfc8705

92

https://tools.ietf.org/html/rfc7671
https://tools.ietf.org/html/draft-huque-tls-dane-clientid-04
https://tools.ietf.org/html/draft-huque-dane-client-cert-05
https://github.com/ashdwilson/dane-pkix-cd
https://tools.ietf.org/html/rfc8615
https://tools.ietf.org/html/rfc8446
https://datatracker.ietf.org/wg/jose/documents/
https://datatracker.ietf.org/wg/cose/documents/
https://www.iana.org/assignments/email-auth/email-auth.xhtml
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/draft-dukhovni-tls-dnssec-chain-02
https://tools.ietf.org/html/rfc6762
https://tools.ietf.org/html/rfc5216
https://tools.ietf.org/html/rfc7239
https://tools.ietf.org/html/draft-bdc-something-something-certificate-04
https://www.haproxy.com/blog/haproxy/proxy-protocol/
https://tools.ietf.org/html/rfc8162
https://tools.ietf.org/html/rfc5922
https://tools.ietf.org/html/rfc8705

