
Y(J)S  SRTSN  1

SR-TSN
draft-stein-srtsn-00

Yaakov (J) Stein

RAD

DetNet

IETF-110



Y(J)S  SRTSN  2

What is the problem I am solving?

SRTSN is a new mechanism for Time Sensitive packet flows

There two good reasons not to use time scheduled gating (Qbv) : 

1. Qbv assigns packet flows to TDM-like timeslots
negating much of the statmux advantage of PSNs

2. Qbv requires complex optimization and distribution 
which is a challenging exercise at scale

(when not accomplished optimally 
efficiency is abysmal and/or

delay requirements are not met)

Note that low latency is critical for URLLC xHauling
yet, the TSN folks are not mandating their own mechanism  

for this kind of TS flow (802.1CM only includes 
preemption)

leaving only the alternative of physical traffic 
separation



Y(J)S  SRTSN  3

What forwarder architecture is assumed?

Routers (forwarders) perform 2 distinct per-packet and per-router* functions:

* They may also perform per-flow or per-router functions, which are already handled well enough

• forwarding
• to which output port
•where to send

• scheduling
•which packet to transmit
•when to send

with Segment Routing with TSN/DetNet

Note: I wrote 
output queues  

but conventional 
FIFO queues are  
not optimal            
 data structures 

for SRTSN



Y(J)S  SRTSN  4

What am I proposing?

There is an alternative to time scheduled gating
that does not suffer from these drawbacks

• it can be optimized even for relatively large networks
• its configuration can be easily and rapidly distributed
• time sensitive flows can be dynamically added or removed
• it lowers average latency as compared to standard queueing 
• ratio of missed deadlines can be tuned 

The approach requires adding a new extension header
containing a stack (or equivalent) data structure

One implementation of the proposal 
is merged with source routing or Segment Routing

implementing a more complete form of network programming



Y(J)S  SRTSN  5

What else can be done?

There are several known ways 
to reduce end-to-end propagation delay, for example :

• Longest In System 
– insert the packet's birth time into the header
– prioritize packets with earlier birth times

this is suboptimal since a LIS packet 
with a loose delay budget

will be sent before a younger packet with a tight 
budget

•  Earliest Deadline First
– insert packet’s deadline into the header
– prioritize packets with earlier deadlines

this is suboptimal since an EDF packet 
already be close to its destination

will be sent before a later packet far from 
destination



Y(J)S  SRTSN  6

So, what’s the stack-based approach?

The stack-based approach inserts into the packet local deadlines 
for each router along the path

and each router prioritizes according to its own local deadline

The router may perform EDF on local deadlines
or maybe Just In Time, or any other method 

to ensure that the packet exits before its local deadline

In fact, one particularly convoluted method reproduces Qbv
but without having to configure all the routers

Notes:
•  the router needs something more complex than a FIFO queue

but less complex than time scheduled gates
• there are several ways to compute the local deadlines

(more on that later)



Y(J)S  SRTSN  7

What is SRTSN?

If we are already using a stack
why not reuse Segment Routing’s stack too?

With SRTSN each TS packet carries a stack with both
– forwarding (segment routing)  instructions   and
– scheduling (local deadline) instructions 

in each stack entry

Like in SR, the stack is inserted by the ingress router
which has its clock sync’ed to all the other routers

so that the deadlines are directly comparable

There may additionally be non-TS packets with lower priority
and there may be several priority levels of TS packets



Y(J)S  SRTSN  8

Simple Example *

Total delay budget = 200 μsec

Minimal delay = link latencies + minimal residence times = 100 μsec

Fairly divide spare 100 μsec queueing time between forwarders

* This is just one way to set local deadlines

SRTSN stack

packet



Y(J)S  SRTSN  9

Won’t that take a lot of room?

If each SRTSN stack consists of 
•  a 128-bit IPv6 address
•  a 64-bit timestamp
then each stack entry would consume 24 bytes!

But we needn’t be so wasteful !

Our deadline wraparound requirements are minimal
(they are unambiguous if wraparound is twice the maximum time path time)

and in a single network we need only specify router suffixes 
(or even router indexes)

In fact, each entry need only be
ceil( log2(Nrouters) ) + ceil( log2(2 max-path-time / resolution) ) + 1  bits

For small networks this is about 16 and for medium ones 32 bits

So, 4-8 hops only require about as much as  a single IPv6 address!



Y(J)S  SRTSN  10

What am I asking this WG?

Being a solution for Time Sensitive flows
this work seems to naturally fit the DetNet charter

– addresses bounds on latency 
– focuses on the data plane aspects 
– applicable to both L2 and L3 networks 

(no physical layer mechanism needed)
– mostly for networks under single administrative control 

Is there interest here ?

I request the DetNet and Spring chairs to coordinate
as to where this work should progress



Y(J)S  SRTSN  11

Thanks for listening !

Yaakov_S@rad.com

comments appreciated


	SR-TSN draft-stein-srtsn-00
	What is the problem I am solving?
	What forwarder architecture is assumed?
	What am I proposing?
	What else can be done?
	So, what’s the stack-based approach?
	What is SRTSN?
	Simple Example *
	Won’t that take a lot of room?
	What am I asking this WG?
	Thanks for listening !

