
DPRIVE@IETF110 draft-ietf-dprive-dnsoquic

DNS-over-QUIC
(DoQ)

draft-ietf-dprive-dnsoquic

Christain Huitema
Sara Dickinson
Allison Mankin

1

https://datatracker.ietf.org/doc/draft-ietf-dprive-dnsoquic/

DPRIVE@IETF110 draft-ietf-dprive-dnsoquic

DoQ - Background

● April 2017 - First Draft in QUIC WG (stub to resolver ONLY)

○ Since then - Christian has worked on QUIC and DoQ implementations

● March 2019 - IETF 104 some hackathon work….

● March 2020 - Draft moved to DPRIVE WG (adopted Apr 2020)

2

DPRIVE@IETF110 draft-ietf-dprive-dnsoquic

DoQ - Background

● Nov 2020 - (IETF 109) DPRIVE WG meeting

○ Still no clear answer on whether WG wants to pursue for stub-rec
■ Is it needed? Is it (more) performant?

○ Asked to consider extending draft to cover rec-auth and XFR

● Dec 2020 - AgGuard launched first DoQ resolver service

● Feb 2021 - Core QUIC docs now in RFC Editor Queue

● Feb 2021 - XoT draft passes WGLC

3

DPRIVE@IETF110 draft-ietf-dprive-dnsoquic

Updates in -02 draft (Feb 2020)

● Add implementation section

● Add appendix on how to potentially support XFR

● Update IANA Considerations: Plan to request port 8853
○ Port 784 used previously for for experiments

● Minor updates related to transport parameters
○ Based on feedback from interop between picoquic and aioquic. Thanks, Stéphane!

4

DPRIVE@IETF110 draft-ietf-dprive-dnsoquic

Implementation status (all open source)

5

Implementation Language Notes

CoreDNS Go AdGuard use as DoQ server

AdGuard DNS Proxy Go Simple proxy or server supporting DoQ (used in ADGuard Home)

dnslookup Go Command line utility wrapper for Adguard DNS proxy

AdGuard C++ DNS libs C++ AdGuard use in mobile app

Quicdoc C Simple DoQ impl based on Picoquic

aioquic Python QUIC implementation includes example DoQ client/server

Flamethrower C++ DNS performance utility with experimental DoQ

DPRIVE@IETF110 draft-ietf-dprive-dnsoquic

Implementation status (all open source)

● Performance Measurements
○ None yet AFAWK
○ But... AdGuard claim performs well in mobile environment

(lower bandwidth, handles packet loss better, connection migration)

6

Implementation Language Notes

CoreDNS Go AdGuard use as DoQ server

AdGuard DNS Proxy Go Simple proxy or server supporting DoQ (used in AdGuard Home)

dnslookup Go Command line utility wrapper for Adguard DNS proxy

AdGuard C++ DNS libs C++ AdGuard use in mobile app

Quicdoc C Simple DoQ impl based on Picoquic

aioquic Python QUIC implementation includes example DoQ client/server

Flamethrower C++ DNS performance utility with experimental DoQ

DPRIVE@IETF110 draft-ietf-dprive-dnsoquic

How to support Recursive to Authoritative?

● No real practical difference to DoT for discovery
○ Both have dedicated port and same authentication model

7

DPRIVE@IETF110 draft-ietf-dprive-dnsoquic

How to support Recursive to Authoritative?

● No real practical difference to DoT for discovery
○ Both have dedicated port and same authentication model

● Issue arises for XFR support….
○ Current draft uses very simple ‘clean’ mapping:

■ 1 DNS query/response pair maps to 1 QUIC stream
(stream is closed by each end immediately after sending)

■ StreamData is a UDP-like payload (Query ID=0) - no 2 byte length field

○ But...XFRs can have multiple responses….

8

STREAM 4: Query

Single QUIC connection

STREAM 8: Query

STREAM 8: Response

STREAM 4: Response

STREAM 12: Query

DPRIVE@IETF110 draft-ietf-dprive-dnsoquic

How to support XFR?

● Initial proposal in Appendix of current draft describes an alternative mapping
○ Prepend ALL DNS messages with a 2 byte length field
○ Relax mapping to allow multiple responses on a single stream for an XFR query

(In practice, DoQ stream content is similar to a TCP connection)

● Pros: Supports XFR, ALPN allows backwards compatibility
● Cons: Complicates mapping, small overhead, new error conditions

9

STREAM 4: (len) XFR Query

Single QUIC connection

STREAM 8: (len) Query

STREAM 8: (len) Response

STREAM 4: (len) XFR Response

STREAM 12: (len) Query

 (len) XFR Response

 (len) XFR Response

DPRIVE@IETF110 draft-ietf-dprive-dnsoquic

How to support XFR?

● Initial proposal in Appendix of current draft describes an alternative mapping
○ Prepend ALL DNS messages with a 2 byte length field
○ Relax mapping to allow multiple responses on a single stream for an XFR query

(In practice, DoQ stream content is similar to a TCP connection)

● Pros: Supports XFR, ALPN allows backwards compatibility
● Cons: Complicates mapping, small overhead, new error conditions

● Range of other possibilities to also consider…
○ Require server to add 2 byte length field ONLY to XFR responses
○ Use separate server initiated streams for each XFR response
○ Define new stream type for XFRs within DoQ
○ Define XFR-over-QUIC as a separate protocol with different ALPN

■ NOTE: QUIC supports server initiated streams so a PUSH model is possible

10

DPRIVE@IETF110 draft-ietf-dprive-dnsoquic

Questions for Working Group

● Implementation and operational progress
○ Why not move forward with specification?
○ Is more performance data still needed?

● Scope: stub-rec, rec-auth or both?

● If rec-auth is included, how/if to handle XFR support?

11

DPRIVE@IETF110 draft-ietf-dprive-dnsoquic

Backup slides

12

DPRIVE@IETF110 draft-ietf-dprive-dnsoquic

QUIC

UDP

DNS over
QUIC (DoQ)

IP

What is DoQ?

● Simple mapping of DNS over dedicated QUIC
connections

○ One QUIC Stream per DNS Query/Response
○ Query and Response size up to 64K (65536)
○ Parallel processing, no head of queue blocking
○ QUIC handles timers, retransmissions, connection

management

● Draft currently targets the stub-recursive scenario
○ Recursive-authoritative requires discovery

● Operates on dedicated port (TBC-IANA)

DPRIVE@IETF110 draft-ietf-dprive-dnsoquic

Example flow, First connection, 1-RTT

● QUIC handshake embeds TLS
handshake

○ Size of server responses depends on
size of server certificate, signature

● DNS Query can be sent as soon as
server first flight is received

● Response arrives after 2-RTT plus
service time.

Initial packet (Client Hello)

Initial(Server Hello) +
Handshake (extensions,
certificate, server finished)

Handshake (ACK, Client finished) +
1-RTT (Stream 0: DNS query)

1-RTT (Handshake Done,
Session Ticket, ACK,
Stream 0: DNS Response)

1-RTT (ACK)

DPRIVE@IETF110 draft-ietf-dprive-dnsoquic

Example flow, Second connection, 0-RTT

● Session Ticket obtained during
previous connection

● DNS Query sent immediately as
0-RTT data

● DNS Response sent with first server
flight

● Response arrives after 1-RTT plus
service time.

Initial packet (Client Hello + Ticket)
+ 0-RTT (Stream 0: DNS query)

Initial(Server Hello) +
Handshake (extensions, server
finished) + 1 RTT (ACK,
Stream 0: DNS Response)

Handshake (ACK, Client finished)

1-RTT (Handshake Done,
Session Ticket)

1-RTT (ACK)

DPRIVE@IETF110 draft-ietf-dprive-dnsoquic

Example flow, DNS Queries (following HS)

● Each Query uses a new QUIC
stream (Query-ID is always 0)

● Responses can arrive in any order

1-RTT (Stream 4: DNS query)

1 RTT (ACK, Stream 8: DNS
Response)

1-RTT (Stream 4: DNS response)

1-RTT (Stream 8: DNS query)

DPRIVE@IETF110 draft-ietf-dprive-dnsoquic

DoQ vs DoT vs DoH3?

● Differences with DoT
○ QUIC instead of TLS + TCP

● Difference with DoH3
○ DoH3 has integration with the Web
○ DoQ does not need to use the

HTTP-3 layer
○ DoQ has no dependency on HTTP

platforms

● With ESNI/ECHO, all 3 solutions
can cross firewalls

QUIC

UDP

DoQ

IP

TLS

TCP

DoT

IP

QUIC

UDP

HTTP-3

IP

DoH3

