Signaling Authoritative DNS Encryption

draft-rescorla-dprive-adox
Tommy Pauly, Eric Rescorla, David Schinazi, Chris Wood
Threat Model

- Active attacker on-path between recursive and all authoritatives
 - What RFC 3552 calls the “Internet Threat Model”
- Passive attacker on-path between recursive and all authoritatives
- Passive attacker on-path between recursive and some authoritatives
 - Worth considering but not here
What needs to be encrypted?

- Generally need to encrypt to both the parent and the child recursive.

- Both of these queries reveal the target domain:
 - Exception: queries for X.example.com where X is part of a large anonymity set (i.e., not www, web, etc.)
Basic Idea: Use SVCB

- The authoritative has a SVCB record
 - This indicates (1) that it supports encryption (2) what protocol (DoT, DoH, DoQ, it supports)
 - Served by the parent in additional data

- The recursive connects to the indicated server with TLS/QUIC
 - Authenticates in the usual fashion (WebPKI, DANE, etc.)

- Hard fail when you can’t negotiate TLS or can’t authenticate
 - i.e., don’t fall back to Do53
Example

- Generally need to encrypt to both the parent and the child
What if you can't use additional data glue?

- The recursive can connect to the authoritative and ask for SVCB
- This will be over Do53
 - Or at best opportunistically
 - Because you don't yet have SVCB
- Only secure if the authoritative zone is DNSSEC-signed
 - Because TLS is providing integrity from the parent
- Special case: SVCB not currently permitted at the root zone
 - Fix: pre-configure recursives with the TLS status of the TLD authoritatives
- Side note: you're also going to want SVCB for ECH
Aren't you trusting the parent?

- Yes. You need that to get the NS record for the child
- What about DNSSEC?
 - NS records in the parent zone are unsigned
 - By the time you have connected to the (bogus) NS server and found out the NS records are bad, it's too late
- You should still validate NS and SVCB when zone is signed
 - This allows for detecting attacks retrospectively
How do you authenticate the resolver?

- The usual way
- You have the NS record from the parent and hence the name
- Choices
 - WebPKI
 - DANE (you’ll want the TLS extension)
- **Warning**: potential disagreement between recursive and authoritative on supported methods
 - How do we distinguish between mismatch and attack?
 - Need some way for the authoritative to indicate what kind of credentials it has
 - Add a new SvcKey to SVCB
What if there are no common auth methods?

- OK to proceed with unauthenticated TLS
 - This may provide some defense against passive attack
 - This allows for incremental adoption of new auth methods
- Also useful for retrieving SVCB and NS
How does security work?

- **Connection is secure if...**
 - TLS certificate checks out AND
 - ... NS name checks out (referred over TLS or NS signed by DNSSEC) AND
 - ... SVCB record is OK (sent over TLS or signed by DNSSEC)

- **Referrals sent over TLS allow recursive security**
 - If referral/SVCB are secured by TLS...
 - ... then child records are delivered securely if child TLS certificate valid

- **Security propagates recursively... TLS all the way down**
 - TLS trust anchors can be configured for TLDs, roots, etc...
 - ... or bootstrapped from DNSSEC signatures when NS/SVCB are signed

- **SVCB checks also protect against downgrade attacks!**
Next steps?

- Pull in ideas from NS2?
- WG adoption?
Known Contentious Issues

- DANE vs. WebPKI
- DoT vs. DoH
- Draft position: why not both? SVCB is plenty flexible