DRIP Implementation

Andrei Gurtov & students
Linköping University, Sweden

DRIP IETF 110th Online Meeting
March 9, 2021
Starting Points

• OpenHIP (v2 alpha branch) - 4 students
 • https://bitbucket.org/openhip/
 • draft-moskowitz-hip-new-crypto-06

• OpenDroneID - 5 students
 • https://www.opendroneid.org/code/

• TDDE21 Advanced Project: Secure Distributed and Embedded Systems (6 ECTS) Sep-Dec 2020
 • https://www.ida.liu.se/~TDDE21/
New Requirements for HIPv2

- New cryptographic algorithm (EdDSA)
- New ORCHIDs - include additional info in Host Identity Tag (HIT), needed for hierarchical HITs
- Hierarchical HITs - embed information about the issuing authority inside HIT
New ORCHID

- Overlay Routable Cryptographic Hash Identifiers
- Endpoint identifiers at applications
- Before => ORCHID := Prefix | OGA ID | Encode_96(Hash)
 - Prefix = 2001:20::/28 (IANA)
 - ODA ID = 4 bit hash identifier
 - Encode_96(Hash) = Middle 96 bits of the hash output
- Now => ORCHID := Prefix | OGA ID | Info (n) | Hash (m)
 - New prefix for HHITs
 - Hash(m) = Hash function which outputs m bits, use cSHAKE
 - Encode_96(Hash) split into Info(n) and Hash(m), Info(n) used in HHITs as a tag
New Crypto

- EdDSA (Edwards-curve Digital Signature Algorithm) is a digital signature scheme that is based on elliptic-curve cryptography.
 - Designed to be a fast algorithm without sacrificing security
 - Less dependent on a good random number generator, compared to ECDSA

- The Keyak cipher is used as a lightweight alternative to AES, and also supports authentication of the encrypted data
 - Move to Xoodyak, follow NIST

- The KKDF key derivation function (based on KMAC) is a more efficient alternative to the HMAC-based HKDF
Current status – New crypto

All parts of the draft are working:

- Curve25519 and **Curve448** Diffie-Hellman key exchange
- EdDSA key generation (HI) and signatures (**based on both curves mentioned above**)
- HIT generation with New ORCHIDs is done
- KKDF as key derivation function instead of HKDF
- Keyak as HIP_CIPHER alternative (lightweight, authenticated cipher)
- **Base exchange with HIT suite negotiation now works fine**
Problem statement - DRIP

Broadcast prototype Drone ID over Bluetooth or WiFi as HIP Host identity tag

- DRIP IETF Working Group
- Host Identity Tag
- Raspberry Pi
- 20 Bytes
- Receiver in Android
State of the art

Remote ID RID

- No trust in broadcast messages

Host Identity:

- Host Identity Tag (HIT)
 - Hashed encoding of the Host Identifier
 - Encoded according to ORCHID generation method using a specific context ID
 - Algorithms used: SHA-1, SHA-256 and SHA-384
- Hierarchical Host Identity Tag (HHIT)
 - Adds two levels of hierarchical administration control
- Drone Remote Identification Protocol (DRIP)
 - Architecture document draft 2020-10-28
Current status

App:

- Scanning advertising IDs works as intended
- Database added to update positions of drones on a map
- When a drone is detected it will fetch the position and display it on the map

RPI:

- A script that generates a HIT tag and broadcast it over Bluetooth
Raspberry Pi: Bluetooth advertising

- Two scripts
 - One for configuring the RPI to use the correct version of openssl and hitgen from openhip
 - The other to actually broadcast the generated HIT
Broadcasting over Bluetooth

Multiple Beacon standards

![Diagram of BLE Advertising PDU and EDDYSTONE FRAME](image)

Broadcasting over Bluetooth

- Easy to switch between standards, they have very similar structure
- Easy to send out beacons using hcitool on the RPi, only requires a few lines of code
- Much easier to scan, there is already widespread support for scanning beacons on both Android and IOS devices
- Max range for BLE with Bluetooth 4 is around 91m
- Max range for BLE with Bluetooth 5 is around 548m
- Advertising extension enables 255 bytes payloads in Bluetooth 5
Scripts

- Install needed libraries
- Downgrade to openssl v1.0.2i
- Install openhip
Web server

Used technologies

- REST-API
- MySQL
- PHPMyAdmin
- Docker

Fields

- ID
- DRIP ID
- Timestamp
- Model of aircraft
- Latitude
- Longitude
- Owner
Android application

- Bluetooth beacon parser
- Database lookup

Functions:
- Read Bluetooth LE beacons
- Draw found drone positions on map
- Draw drone flight path on map
Development

- Java and Gradle for build
- Altbeacon
 - Read BLE broadcasts
 - includes distance measuring
- OkHTTP
 - Send HTTP-requests
- Google Maps API
 - Draw maps and markers
 - Requires API-key from Google
Android (images)
Android Application (cont.)

Previous software

OpenDroneID
- Bluetooth
- Includes parser for Bluetooth messages
- Functionality for Maps, points and information about the drone inside the GUI

Attempt for wifi
- No low level access to broadcast messages without rooting phone
- Possible to connect to individual drones

Method to scan
- Lookup found BLE broadcasts with query to server
- Draw found drones on the map and place in list
Extending the Android Application

Possible new features

- Support for receiving DRIP using Wi-Fi
- Bluetooth 5.0
- Certificate when implemented in the sent broadcasts
- Visualize different types of information about drone based on receiver privilege
Conclusion

- A working prototype of broadcasting a HIT has been implemented.
- A lot of time was spent on research and finding ways around encountered problems.
- Good starting point for future work to make full use of Bluetooth 5’s extended advertising.