BPSec COSE Contexts

BRIAN SIPOS

RKF ENGINEERING SOLUTIONS

IETF110

Goals for COSE/BPSec

No not alter BPSec structures or requirements.

• This is purely an extension within the existing security context mechanism.

Handle current symmetric-keyed and PKIX algorithms.

• Leverage existing algorithm definitions.

Follow algorithm-use and key-use best practices.

• Avoid key overuse, use random content encryption keys.

Inherit future gains made by COSE off-the-shelf algorithms.

Proposed Security Contexts

One context codepoint with result types defined for each BPSec block type:

- COSE Integrity results (MAC and Signature)
- COSE Confidentiality results (AEAD Encrypt)

Security parameters:

- Additional authenticated data (AAD) scope parameter identical to BPSec Default Security Contexts.
- Public keys in parameters to de-duplicate data (e.g., when signing multiple blocks).
- Potential future extensions could provide additional supporting data (e.g., OCSP stapling).

Full COSE messages in each target's result.

- Reuse COSE message tags as result type codes.
- Allows an application to use any current or future COSE algorithm types (and combinations).
- Allows multiple recipients for a single security block (both BIB and BCB).
- Interoperability requirements are defined in a COSE Profile (next slide).

Proposed COSE Profile

Required algorithms for AES-GCM-256, AES key-wrap, and HMAC-SHA2-256.

Recommended algorithms for EC and RSA signing and key-wrap/key-generation.

 Additional public key material can be included as security parameters, applying to all results in the block.

+=====================================	COSE Layer		+======= Code 	Implementation Requirements
Integrity	1	HMAC 256/256	5	Required
Integrity	1	ES256	-7	Recommended
Integrity	1	EdDSA	-8	Recommended
Integrity	1	PS256	-37	Recommended
Confidentiality	1	A256GCM	3	Required
Integrity or Confidentiality	2	A256KW	-5 	Required
Integrity or Confidentiality	2	ECDH-ES + A256KW	-31	Recommended
Integrity or Confidentiality	2	RSAES-0AEP w/ SHA-256	-41	Recommended

Table 4: Interoperability Algorithms

Desired WG Direction

Adoption as WG Draft?

The point here is to allow BPSec in a PKIX environment in the very near term.

- COSE is a known quantity with existing coding and processing tools.
- Validation of a Node ID within a PKIX certificate are already defined in TCPCLv4.

Some secondary questions remain:

- How does a security acceptor handle a BIB signed by a key with a certificate for a different Node ID than the security source? Base BPSec doesn't really deal with identity logic.
- A BIB with an "x5t" reference can include the signing certificate (chain). Should a BCB with an "x5t" recipient also include the recipient certificate itself?
- Should a mode of operation be to include return-path encryption certificate (as S/MIME does)?

• Etc.