JSON Type serialization
registry

Darrel Miller

JSON is the primary format used by APIs...

value

whitespace —x string 7 whitespace 4

[
L

' number |

[
\

object

[
\

array

null

But has a very limited type system

JSON Schema added a little

3.5. JSON Schema primitive types

JSON Schema defines seven primitive types for JSON values:
array
A JSON array.

boolean
A JSON boolean.
integer
A JSON number without a fraction or exponent part.

number
Any JSON number. Number includes integer.

null
The JSON null value.

object
A JSON object.

string
A JSON string.

OpenAPI| Specification went further

Common Name type format Comments
integer integer int32 signed 32 bits

long integer inte4 signed 64 bits

float number float

double number double

string string

byte string byte base64 encoded characters

binary string binary any sequence of octets

boolean boolean

date string date As defined by full-date - RFC3339
dateTime string date-time As defined by date-time - RFC3339

password string password Used to hint Uls the input needs to be obscured.

OData got carried away

3.3 Primitive Types
Structured types are composed of other structured types and primitive types. OData
defines the following primitive types:

Type
Edm.Binary
Edm.Boolean
Edm.Byte
Edm.Date
Edm.DateTimeOffset
Edm.Decimal
Edm.Double
Edm.Duration
Edm.Guid
Edm.Int16
Edm.Int32
Edm.Int64
Edm.SByte
Edm.Single
Edm.Stream
Edm.String
Edm.TimeOfDay

Edm.Geography
Edm.GeographyPoint

Edm.GeographyLineString
Edm.GeographyPolygon
Edm.GeographyMultiPoint
Edm.GeographyMultiLineString
Edm.GeographyMultiPolygon
Edm.GeographyCollection
Edm.Geometry
Edm.GeometryPoint
Edm.GeometryLineString
Edm.GeometryPolygon
Edm.GeometryMultiPoint
Edm.GeometryMultiLineString
Edm.GeometryMultiPolygon

Edm.GeometryCollection

Meaning

Binary data

Binary-valued logic

Unsigned 8-bit integer

Date without a time-zone offset

Date and time with a time-zone offset, no leap seconds

Numeric values with decimal representation

IEEE 754 binary64 floating-point number (15-17 decimal digits)

Signed duration in days, hours, minutes, and (sub)seconds
16-byte (128-bit) unique identifier

Signed 16-bit integer

Signed 32-bit integer

Signed 64-bit integer

Signed 8-bit integer

IEEE 754 binary32 floating-point number (6-9 decimal digits)
Binary data stream

Sequence of UTF-8 characters

Clock time 00:00-23:59:59.999999999999

Abstract base type for all Geography types
A point in a round-earth coordinate system

Line string in a round-earth coordinate system

Polygon in a round-earth coordinate system

Collection of points in a round-earth coordinate system
Collection of line strings in a round-earth coordinate system
Collection of polygons in a round-earth coordinate system
Collection of arbitrary Geography values

Abstract base type for all Geometry types

Point in a flat-earth coordinate system

Line string in a flat-earth coordinate system

Polygon in a flat-earth coordinate system

Collection of points in a flat-earth coordinate system
Collection of line strings in a flat-earth coordinate system
Collection of polygons in a flat-earth coordinate system

Collection of arbitrary Geometry values

https://docs.oasis-open.org/odata/odata-csdl-xml/v4.01/csprd06/odata-csdl-xml-v4.01-csprd06.html#sec_PrimitiveTypes

GraphQL kept things simple

GraphQL comes with a set of default scalar types out of the box
e Int:A signed 32-bit integer.
e Float: A signed double-precision floating-point value.
e String: A UTF-8 character sequence.
¢ Boolean: true Or false

e ID: The ID scalar type represents a unique identifier, often used to refetch an object or
as the key for a cache. The ID type is serialized in the same way as a String; however,
defining it as an ID signifies that it is not intended to be human-readable

With some exercises left up to the implementer....

scalar Date

Then it's up to our implementation to define how that type should be serialized, deserialized,
and validated. For example, you could specify that the Date type should always be
serialized into an integer timestamp, and your client should know to expect that format for
any date fields.

Some have gone beyond language primitives...

Kinds

https://docs.akita.software/docs/data-formats

Beyond primitives completely

Field name Type Description

seconds int64 Signed seconds of the span of time. Must be from -315,576,000,000 to +315,576,000,000
inclusive.

nanos int32 Signed fractions of a second at nanosecond resolution of the span of time. Durations less

than one second are represented with a 0 seconds field and a positive or negative nanos
field. For durations of one second or more, a non-zero value for the nanos field must be of the
same sign as the seconds field. Must be from -999,999,999 to +999,999,999 inclusive.

https://developers.google.com/protocol-buffers/docs/reference/google.protobufttgoogle.protobuf.Duration

More than one right answer

"linkset": [
[{
{ "anchor": "http://example.net/bar", "href": "https://evertpot.com/",
“next”: ["rel": "author",
{"href": "http://example.com/fool"} "title": "Evert Pot"
] i
}s {
{ "anchor": "http://example.net/boo", "href": "https://test.example/",
"http://example.com/relations/baz" : ["hal": "gelf"
{"href": "http://example.com/foo2"} }
]]
t
]

https://www.ietf.org/archive/id/draft-wilde-linkset-07.txt https://tools.ietf.org/html/draft-pot-json-link-02

JSON Type Serialization Registry

* Globally unique type identifier

* Reference to specification that defines JSON fragment
e Syntax (and semantics?)

e Standardized Schema format?

Why?

* Stop re-inventing JSON wheels
 Stop bikeshedding, support multiple.

* Needed because APIs share lots of semantics between consumer and
provider

* Developers are not using media types to define payload semantics
and serialization, so language based serializers define the behavior,
which hurts interop.

