
Transport parameters for
QUIC 0-RTT connections

draft-kuhn-quic-0rtt-bdp-07	
Nicolas	Kuhn,	Emile	Stephan,	Gorry	Fairhurst,	Tom	Jones	

ICCRG	IETF-110	

This talk concerns a transport (QUIC)
and a path characteristic (satellite)
• Paths	can	be	very	different	characteristics	
•  Higher	delay		>>10	mS	to	~secs	of	Path	RTT	(~650	ms	for	GEO)	
•  High	capacity:	Large	Bandwidth	Delay	Product	
•  Capacity	available	on	demand	(not	*always*	available)		
•  Asymmetry	improves	overall	efficiency	

•  Impacts	
•  Delay:	Startup;	Flow	Control	Procedure	
•  BDP:	Flow	Control	Buffers;	cwnd	
•  Capacity:	Not	safe	to	assume	always	high	capacity;	but	mostly	true	
•  Asymmetry:	Watch-out	for	ACKs,	etc	

• Other	paths	might	also	have	similar	needs.	
ICCRG	IETF-110	

Context

•  Extension	to	transport	parameters	
•  Shared	during	the	0-RTT	phase	(RTT,	BDP,	etc)	
•  Allows	resumption	using	the	additional	transport	and	
connection	properties	discovered	from	previous	connections	

• Use	cases:		
•  Optimizing	client	requests	
•  Safe	jump	in	cwnd/flow	control	size	
•  Sharing	transport	information	across	multiple	connections	

Similar	idea	proposed	for	H2	and	TLS1.3	in	:	
"Optimizations	for	Using	TLS	Early	Data	in	HTTP/2	;	draft-thomson-httpbis-h2-0rtt-00”	

ICCRG	IETF-110	

A very simple example of why this helps:

BDP	&	RTT	have	a	large	impact	on	growth	
Reno:	Effect	of	RTT	
Jump:	a	simple	jump	to	25%	of	previous	cwnd	
Hyjump:	More	considered	jump	to	25%	of	cwnd	and	then	Reno	

ICCRG	IETF-110	

New transport parameters for QUIC to help
resume connections in 0-RTT mode

•  	First	connection	without	0-RTT:	
•  Server	stores	parameters	in	BDP	extension	
•  At	the	end	of	the	first	connection:		

•  Server	sends	the	BDP	extension	frame	to	the	client	
•  Both	client	and	server	can	read	the	content	of	the	BDP	extension	

•  Second	connection	with	0-RTT:		
•  Both	client	and	server	can	retrieve	values	stored	in	the	BDP	extension:	

•  The	client	can	recall	them	when	reconnecting	
•  Path	to	endpoint	*could*	have	changed;	capacity	*could*	have	changed	
	

ICCRG	IETF-110	

BDP metadata

•  recon_bytes_in_flight	(0x000X):		

•  The	bytes	in	flight	measured	on	the	previous	connection	by	server	

•  recon_min_rtt	(0x000X):		
•  The	minimum	RTT	measured	on	the	previous	connection	by	server	

•  recon_max_pkt_number	(0x000X)	
	
	

With	this	information	we	can	jump:	How	do	we	do	so	safely?	

ICCRG	IETF-110	

Motivation – Transport information across
multiple connections
•  Sharing	transport	information	across	multiple	connections	

•  See	I-D.ietf-tcpm-2140bis	
•  TCP	Control	Block	Interdependence	
•  draft-ietf-tcpm-2140bis-09.txt	

ICCRG	IETF-110	

Motivation - Optimizing client requests
 • Dynamic	Adaptive	Streaming	over	HTTPS	(DASH):	

•  Issue	on	clients	in	knowing	the	available	bandwidth	
•  Issues	at	server	to	reach	the	best	available	video	playback	quality			
•  The	client's	requests	could	be	adapted	and	specific	traffic			

BBR	v1	(2018	results)	Reno	

R.	Secchi,	D.	Fernandes,	R.	Sallantin	–	presented	at	NetSat	Days	2018	

Motivation – A « safe » jump in cwnd
•  Implementation	of	draft-kuhn-quic-0rtt-bdp-07:	
•  Picoquic	https://github.com/private-octopus/picoquic/pull/1073	
•  Application	level:2	MB	transfer	-	median		

• Network	characteristics:	draft-jones-tsvwg-transport-for-satellite	
•  50	Mbps	download	/	10	Mbps	upload		
•  RTT	:	650	ms	

• Congestion	control	
•  CUBIC	
•  0-RTT-BDP	reaction:		

•  jump	to	previously	capacity	(not	recommended	but	“easy	to	implement”	as	a	first	step)	
•  Beware	the	potential	issue	in	using	bytes_in_flight	metric	

F.	Simo,	D.	Pradas	

Without	0-
RTT	

With	0-RTT	 With	0-RTT-
BDP	

4,3	s	 3,4	s	 2,9	s	

ICCRG	IETF-110	

Reno and a Jump to 25% of previous cwnd

reno:		
5192ms		

jump:			
2598ms		

ICCRG	IETF-110	

Hyjump: 25% jump after IW,
then grow window to fill the capacity

hyjump-paced:		
3798ms	

hyjump:		
3250ms		

Discussion - Client point-of-view

• Client	can	read	the	values	of	the	extension	
• Client	may:	
•  reject	the	extension	(e.g.	because	connectivity	changed)	
•  accept	and	adapt	the	resource	and	flow	control	parameters		
•  adapt	application	requests	

• Client	cannot	change	the	values	of	the	extension	

ICCRG	IETF-110	

Discussion - BDP extension protected
as Much as initial_max_data
•  For	version	1	of	QUIC:	
•  BDP	extension	is	protected	using	the	mechanism	that	already	
protects	the	"initial_max_data"	parameter	

•  Defined	in	sections	4.5	to	4.7	of	[I-D.ietf-quic-tls]		
•  This	allows	the	server	to	check	parameters	proposed	by	the	
client	are	those	that	the	server	sent	to	the	client	during	the	
previous	connection.	

ICCRG	IETF-110	

The need to sync between QUIC and TLS

• Proposed	extension	sits	between	TLS	and	QUIC	specifications	
• Which	is	not	always	clear	:		

•  see	discussion	in	
https://mailarchive.ietf.org/arch/msg/quic/
7cSiXuuqGRjiRuKw7cfHreScuNc/	

•  There	seems	to	be	a	difference	between	
•  Using	QUIC	as	currently	specified	mapped	with	TLS1.3	implementation	
•  Using	QUIC	and	early_data	without	TLS1.3	implementation		
•  Sync	needed	?	

	
	
	
	

ICCRG	IETF-110	

Discussion – Congestion Control safety

•  Some	options	to	use	the	cwnd	info:	
•  Increase	safely	the	initial	congestion	window	[I-D.irtf-iccrg-sallantin-initial-
spreading][CONEXT15]	
•  Some	CDN’s	currently	exploit	a	very	high	Initial	Window	[TMA18]	

•  Jump	after	IW	(Hyjump	–	in	the	previous	slides)	

• We	will	need	to	back-out	quickly	when	the	jump	is	wrong!	
• Do	we	need	a	draft	on	congestion	safety	?	(updating	RFC	6928)	

[I-D.irtf-iccrg-sallantin-initial-spreading]	Sallantin,	R.,	Baudoin,	C.,	Arnal,	F.,	Dubois,	E.,	Chaput,	E.,	and	A.	
Beylot,	"Safe	increase	of	the	TCP's	Initial	Window	Using	Initial	Spreading",	draft-irtf-iccrg-sallantin-initial-
spreading-00	(work	in	progress),	January	2014.	

	[CONEXT15]	Li,	Q.,	Dong,	M.,	and	P.	Godfrey,	"Halfback:	Running	Short	Flows	Quickly	and	Safely",	ACM	
CoNEXT	,	2015.	

	[TMA18]				Ruth,	J.	and	O.	Hohlfeld,	"Demystifying	TCP	Initial	Window	Configurations	of	Content	Distribution	
Networks",	2018	Network	Traffic	Measurement	and	Analysis	Conference	(TMA)	,	2018.	

Next Steps

• Use	a	newBDP	extension	in	QUIC	?	
•  Or	

• Update	the	standard	behavior	?	
•  “For	0-RTT	data	to	be	sent,	the	QUIC	server	must	record	the	
values	of:	
•  initial_max_data	
•  initial_max_stream_data_bidi_local	
•  initial_max_stream_data_bidi_remote	
•  initial_max_stream_data_uni	
•  initial_max_streams_bidi	
•  initial_max_streams_uni”	
•  recon_bytes_in_flight		
•  recon_min_rtt	

ICCRG	IETF-110	

Additional Slides

ICCRG	IETF-110	

Simple model for 50/10 Mbps

As	capacity	increases	the	effects	become	greater!	

ICCRG	IETF-110	

Hybrid: 25% jump after IW, then grow
window to fill capacity for 50/10 Mbps

ICCRG	IETF-110	

draft-kuhn-quic-0rtt-bdp params:

	o		recon_bytes_in_flight	(0x000X):	The	bytes	in	flight	measured	on	
						the	previous	connection	by	the	server.		Integer	number	of	bytes.	
						Using	the	bytes_in_flight	defined	in	[I-D.ietf-quic-recovery],	
						recon_bytes_in_flight	can	be	set	to	bytes_in_flight.	
	
			o		recon_min_rtt	(0x000X):	The	minimum	RTT	measured	on	the	previous	
						connection	by	the	server.		Integer	number	of	milliseconds.		Using	
						the	min_rtt	defined	in	[I-D.ietf-quic-recovery],	recon_min_rtt	can	
						be	set	to	min_rtt.		The	min_rtt	parameter	may	not	track	a	
						decreasing	RTT:	the	min_rtt	that	is	reported	here	may	not	be	the	
						actual	minimum	RTT	measured	during	the	1-RTT	connection,	but	still	
						reflects	the	characteristics	of	the	latency	on	the	network.	

ICCRG	IETF-110	

