draft-per-app-networking-considerations-00

Lorenzo Colitti, Tommy Pauly
Motivation

- Lots of interest recently in application-based networking (APN6, …)
- Draft briefly discusses some of the implications
Per-application networking use cases

- Mobile devices usually connected to more than one network at a time
 - e.g., VoLTE + cellular data + Wi-Fi captive portal

- Network operators/applications may want traffic to be sent on other network
 - Resources on a network that does not have Internet access
 - (VoLTE, IMS/RCS, airplane entertainment system)
 - Enterprise network (e.g., “backend” circuit separate from Internet access for PoS terminal app)
 - Specific performance requirements (e.g., voice app traffic scheduled/queued differently)
 - Zero-rating traffic (e.g., “free video streaming traffic” bundle)
 - Local breakout (e.g., use IPv6 addresses that are local to a specific area, and do not have wide mobility)
Implementation

● Today, in commercial/public networks this is often implemented via DPI
 ○ e.g., flow tracking + SNI handshake inspection

● Problems with Deep Packet Inspection
 ○ Complex
 ○ Policy concerns
 ○ Rendered ineffective by continued move towards encryption (RFC 7258…)

● Alternative: host chooses what network to send traffic on
 ○ diffserv, PvDs, APN6, Network tokens, 5G slices, ...

● This draft explores the implications, and suggests mitigations
Open Internet implications

● Could be used to discriminate between types of traffic
 ○ In some jurisdictions, networks cannot discriminate based on application

● If network has influence on host (e.g., mobile carrier requirements), host impacted as well

● Can be mitigated or avoided by discriminating between **traffic classes** instead of between different applications

● May be mitigated if user is aware of special treatment
Privacy implications

● Some proposals say that app should expose its identity to the network
 ○ RFC 7258 says network protocols should expose least information possible
 ○ Information about what applications in use is highly privacy-sensitive

● Identity can be exposed even in the absence of explicit signalling
 ○ e.g., host sets policy that requires app X to be on network Y
 ○ Network Y can evince that app X is in use because it sees a packet

● Can be mitigated or avoided by discriminating between traffic classes instead of between different applications

● Can be mitigated if user is aware of privacy implications?
Other considerations

- Categories must be broad enough not to identify individual applications
 - Example: role-playing game:
 - Role-playing game?
 - Game?
 - Real-time/low-latency?
 - Internet traffic?

- Should have APIs for this that are not tied to specific signaling technologies
 - Selecting a Provisioning Domain (PvD) might be a useful layer of abstraction
 - API should not reveal user identity to the network without network authentication
Next steps

● These principles and requirements provide a foundation for future proposals
● Is there interest in further exploration of the problem?
● Should we adopt in INTAREA? Is there a better venue?