New IKEv2 Payload Format

Valery Smyslov
svan@elvis.ru

IETF 110
Existing Format Redundancy

Many payloads contain substantial redundancy

- Payload Length field occupies 2 bytes, while most payloads are shorter
- most parameters occupy 2 bytes, while less than 256 values are defined
- zero-filled RESERVED fields

Example: SA Payload on the right contains one Proposal with four Transforms:

- ENCR_AES_CBC (128 bits)
- PRF_HMAC_SHA2_256
- AUTH_HMAC_SHA2_256_128
- 2048-bit MODP Group

Payload size is 48 bytes, among which 24 bytes are zeroes.
Existing Format Limitations

- Payload Length field occupies 2 bytes, so payload size is limited to 64 Kbytes
 - no problem with Message size, which is limited to 4 Gbytes
Making Payloads Smaller

• Would decrease power and network bandwidth consumption (important for IoT devices)
• Would decrease chances of IP fragmentation in the IKE_SA_INIT and IKE fragmentation in the rest exchanges
Lifting 64 Kbytes Size Limit

- Would allow using PQ algorithms with long public keys and signatures
 - draft-tjhai-ikev2-beyond-64k-limit
- Would allow transferring large chunks of data (e.g. in CP payload)
New Format Requirements

• Must be suitable for both small and large payloads
• Must be applicable to any payload type, including not yet defined ones
 – some payloads may have special format if it is justified
• The encoder/parser must remain simple and consume low resources
New Format Proposal

- Three possible formats for new Generic Payload Header
 - for small payloads (up to 64 bytes)
 - for medium size payloads (up to 8 Kbytes)
 - for large payloads (up to 512 Mbytes)
- No RESERVED fields
- Revise existing payloads headers to reduce their size
 - remove unnecessary fields
- Special Format for some payloads (SA, empty Status Notify)
New Generic Payload Header

1. Small payloads (2 bytes, 6 bits for Payload Length)

<table>
<thead>
<tr>
<th>Next Payload</th>
<th>C</th>
<th>0</th>
<th>Payload Length</th>
</tr>
</thead>
</table>

2. Medium size payloads (3 bytes, 13 bits for Payload Length)

<table>
<thead>
<tr>
<th>Next Payload</th>
<th>C</th>
<th>1</th>
<th>0</th>
<th>Payload Length</th>
</tr>
</thead>
</table>

3. Large payloads (5 bytes, 29 bits for Payload Length)

<table>
<thead>
<tr>
<th>Next Payload</th>
<th>C</th>
<th>1</th>
<th>1</th>
<th>Payload Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payload Length (cont)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Revised Existing Payload Headers

The following payload headers can be revised:

- **Key Exchange, Identification, Authentication, Configuration**
 - remove `RESERVED` field
- **Notify**
 - remove `SPI Size` field (can be deducted from Protocol ID)
- **Delete**
 - remove `SPI Size` field (can be deducted from Protocol ID)
 - remove `Num of SPIs` field (can be deducted from Payload Length)
- **Traffic Selector**
 - remove `RESERVED` field
 - remove `Number of TSs` field (can be deducted from Payload Length)
Special Format

Special format (*) for:

- **SA Payload**
 - SA Payload grows quickly as more and more new transforms are defined and offered by initiators

- **Notify Payload with some Status Type Notification and no data**
 - Exchange of such payloads is a common way to negotiate support for various protocol extensions, so initial IKEv2 messages grow up as more and more extensions are defined

Both payloads contain a lot of redundancy and can be effectively compacted.

(*) Inspired by draft-smyslov-ipsecme-ikev2-compact
SA Payload

Outline:

- Remove all reserved fields
- Remove length fields in substructures (where they are unnecessary)
- Encode all currently defined transforms w/o attributes using one octet (both transform type and transform ID)
- Encode currently defined encryption transforms having key length attribute using two octets
- Leave possibility to encode arbitrary (even not yet defined) transform type and transform ID, as with regular format

Example: SA Payload with one Proposal and four Transforms:

- ENCR_AES_CBC (128 bits)
- PRF_HMAC_SHA2_256
- AUTH_HMAC_SHA2_256_128
- 2048-bit MODP Group

<table>
<thead>
<tr>
<th>Header</th>
<th>Proposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 00 00 30 00 00 00 2c 01 01 00 04 03 00 00 0c 01 00 00 0c 80 0e 00 80 03 00 00 08 02 00 00 05 03 00 00 08 03 00 00 0c 00 00 00 08 04 00 00 0e</td>
<td>22 01 01 00 04 4c 20 e5 cc 8e</td>
</tr>
</tbody>
</table>

Original: 48 bytes

Compact: 11 bytes
Notify Payload

Outline: encode notification in one octet (limited to first 256 status notifications) and omit all other fields from Notify Payload

Example: Notify Payload with IKEV2_FRAGMENTATION_SUPPORTED notification.
Negotiation

If new format is used from the very beginning then the following options exist:

- **New major IKE version (v3)**
 - old responders would return `INVALID_MAJOR_VERSION`
- **New type of initial exchange (e.g. `ALT_IKE_SA_INIT`)**
 - old responders would return `INVALID_SYNTAX`
- **New critical payload in the `IKE_SA_INIT`, followed by payloads in new format**
 - old responders would return `UNSUPPORTED_CRITICAL_PAYLOAD`
Discussion

• We don’t need to assign new payload types except for special format payloads (SA and empty status Notify), do we? What about revised payloads?

• Transport issues for transferring large payloads are out of scope
 – IKE over TCP combined with IKE fragmentation (to solve limitation on 64 Kbytes on a single IKE message over TCP) can be used
 – do we need mixed mode – IKE over TCP combined with plain ESP or ESP over UDP?

• Certificates consume a lot of space, can be compressed
 – RFC 8879 is an example of certificate compression
 – in some use cases draft-mattsson-cose-cbor-cert-compress can be used
Thanks

• Comments? Questions?
• Any interest in this work?