Status update: EDHOC-C
formal verification

Timothy Claeys - Inria
EDHOC-C

- C implementation of EDHOC targeting microcontrollers and constrained systems.
- Goals:
 - All authentication methods
 - At least cipher suite 0, 1, 2 and, 3
 - Standalone application (https://github.com/openwsn-berkeley/EDHOC-C)
 - Integration in RIOT-OS and OpenWSN
- Status:
 - Tested signature-based authentication method
 - cipher suite 0
 - Integration in RIOT (WIP) with François-Xavier Molina
 - Integration in OpenWSN (WIP)
Formally verifying the implementation

RIOT-fp project:

- Joint work between Inria-EVA (Mališa Vučinić, Timothy Claeys) and Inria-Prosecco (Karthikeyan Bhargavan)

Goals:

- Memory safety
- Mitigations against timing side-channels
- Functional correctness w.r.t. a high-level specification (EDHOC spec)
Formally verifying the implementation

Status (since first meeting with Karthik January 28th):

- Refactored code in APIs that facilitate formal verification
 - Message processing API, Message formatting API, crypto API, credential API
 - Each API can be translated to Low* independently and tested with a unit test suite.

Roadmap:

- Two implementations:
 - a high-level “obviously” correct version, written in hacspecl (subset of Rust)
 - a low-level implementation (Low*) translation of EDHOCC code
- Compile hacspecl implementation to F*
- Combine F* and Low* to generate “correct” C code