
draft-struik-lamps-verification-friendly-ecdsa-01

René Struik
Struik Security Consultancy

E-mail: rstruik.ext@gmail.com

IETF 110 – virtual Prague, Czech Republic, March 2021

Verification-Friendly
ECDSA

1

1. ECC Signature Schemes:
– ECDSA, EdDSA
– Implementation details
 ECDSA*

2. Speed-ups:
 Verification with ECDSA vs. with ECDSA*
 How to get from ECDSA to ECDSA*?

4. ECDSA* with reuse of existing ECDSA standards
5. Conclusions

Outline

2struik-lamps-verification-friendly-ecdsa

NIST curves:
Curve model: Weierstrass curve
Curve equation: y2 = x3 + ax + b (mod p)
Base point: G=(Gx, Gy)
Scalar multiplication: addition formulae using, e.g., mixed Jacobian coordinates
Point representation: both coordinates of point P=(X, Y) (affine coordinates)

0x04 || X || Y in most-significant-bit/octet first order
Examples: NIST P-256 (ANSI X9.62, NIST SP 800-56a, SECG, etc.);

Brainpool256r1 (RFC 5639)
ECDSA:
Signature: r || s in most-significant-bit/octet first order
Signing equation: e = s  k + d  r (mod n), where e=Hash(m), R=k G, R  r
Verification: R´ = (e/s) G + (r/s) Q, where Q= d G; check that R´  r

Example: ECDSA, w/ P-256 and SHA-256 (FIPS 186-4, ANSI X9.62, etc.)
Note: message m pre-hashed

ECC Signature Algorithms (1)

3struik-lamps-verification-friendly-ecdsa

CFRG curves:
Curve model: twisted Edwards curve
Curve equation: a x2 + y2 = 1 + d x2y2 (mod p)
Base point: G=(Gx, Gy)
Scalar multiplication: Dawson formulae, using extended coordinates (X: Y: T: Z)
Point representation: compressed point P=(Y, X′), where X′=lsb(X)

Y|| X‘
Examples: Edwards25519, Edwards448 (RFC 7748)

EdDSA:
Signature: R || s
Signing equation: s = k + e  d (mod n), where e=Hash(Q || R || m), R=k G
Verification: s G = R + e Q, where Q=d G
Example: Ed25519-SHA-512, Ed448-SHAKE-256 (RFC 8032)
Notes: Deterministic Schnorr signature, where k=Hash (d’|| m)

Variant w/ pre-hashing uses Hash(m) instead of m

ECC Signature Algorithms (2)

4struik-lamps-verification-friendly-ecdsa

Aspect: ECDSA EdDSA
Curve model: Weierstrass Edwards
Base point: affine affine
Internal coord: Jacobian extended
Formulae: Jacobian Dawson
Wire format: (r, s) (R, s)

@signing:
#message passes: once twice
signing key R: offline inline
inversions mod n: once none

@verification:
single verification no speed-ups speed-ups
batch verification no speed-ups speed-ups

Implementation Detail (1)

5struik-lamps-verification-friendly-ecdsa

APPLICATION NOTE:
Batch verification of
certificate chains;
Batch sanity checks

Aspect: ECDSA EdDSA
Curve model: Weierstrass Edwards
Base point: affine affine
Internal coord: Jacobian extended
Formulae: Jacobian Dawson
Wire format: (r, s) (R, s)

@signing:
#message passes: once twice
signing key R: offline inline
inversions mod n: once none

@verification:
single verification no speed-ups speed-ups
batch verification no speed-ups speed-ups

Implementation Detail (1)

6struik-lamps-verification-friendly-ecdsa

NOTE:

EdDSA is full-Schnorr
signature, which
are also defined for
Weierstrass curves

Not standardized
with IETF 

Standardized with
BSI (as short-Schnorr
Signature (e,s))

Aspect: ECDSA EdDSA ECDSA*
Curve model: Weierstrass Edwards Weierstrass
Base point: affine affine affine
Internal coord: Jacobian extended Jacobian
Formulae: Jacobian Dawson Jacobian
Wire format: (r, s) (R, s) (R, s)

@signing:
#message passes: once twice once
signing key R: offline inline offline
inversions mod n: once none once

@verification:
single verification no speed-ups speed-ups speed-ups
batch verification no speed-ups speed-ups speed-ups

Implementation Detail (2)

7struik-lamps-verification-friendly-ecdsa

Verification Detail (1)

8struik-lamps-verification-friendly-ecdsa

ECDSA:
Signature: r || s in most-significant-bit/octet first order
Signing equation: e = s  k + d  r (mod n), where e=Hash(m), R=k G, R  r
Verification: compute R´ = (e/s) G + (r/s) Q;

check that R‘  r
ECDSA*:
Signature: R || s in most-significant-bit/octet first order
Signing equation: e = s  k + d  r (mod n), where e=Hash(m), R=k G, R  r
Verification: compute R  r;

compute R  R
check that R = (e/s) G + (r/s) Q, where Q= d G

Alternative verify:  (- R + (e/s) G + (r/s) Q) = O for any 0
speed-ups: ~1.3x make scalars small, which halves ECC doubles (single verify)

≥ 2x amortize ECC doubles accross all (batch verify)

ECDSA and ECDSA* the same if one could reverse R‘  r mapping, but  R‘  r

ECDSA and ECDSA* the same if one could reverse R‘  r mapping, but  R‘  r

This follows from the fact that R‘  r is defined as r:=x(R) (mod n)

For all prime-order curves, these pre-images come in pairs {R, -R} in practice

Modified ECDSA signing procedure:
 Step 1: Generate ECDSA signature (r, s) of message m;
 Step 2: Change (r, s) to (r,-s) if ephemeral key R has y-coordinate with odd parity

Notes:
 If (r, s) is a valid ECDSA signature, then so is (r, -s)  the so-called malleability
 Any party can perform Step 2, since for valid signatures R:=(e/s) G + (r/s) Q

This party does not have to be the signer and this can be done retroactively
 If verifyer knows that modified signing produre was used, R‘  r has unique

preimage in practice for all prime-order curves (implicit point compression R)

How to Get from ECDSA to ECDSA*?

9struik-lamps-verification-friendly-ecdsa

Transitioning towards ECDSA* (1)
ECDSA with modified signing procedure allows implementation of ECDSA* with
existing ECDSA standards (for prime-order curves), provided the verifying device
knows this modified signing procedure was indeed used

Option #1: "Big Bang”
 Implement modified signing procedure retroactively for all existing ECDSA

signatures;
 Generate all new ECDSA signatures with the modified signing procedure (i.e.,

mothball the old way of generating ECDSA signatures)
Option #2: mandate in specifications
 This has same effect as Option #1, for a particular protocol

Question: does this entice implementors enough to adopt speed-ups en masse?
Option #3: define new label for ECDSA*
 New devices who recognice label can uniquely recover R from r
 * with label ECDSA as

preprocessing step can still process ECDSA signatures as usual
Question: with PKIX, is new OID best, or non-critical extension?

struik-lamps-verification-friendly-ecdsa

Transitioning towards ECDSA* (2)
From previous slide:
Option #3: define new label for ECDSA*
 New devices who recognice label can uniquely recover R from r
 * with label ECDSA as

preprocessing step can still process ECDSA signatures as usual
Question: with PKIX, is new OID best, or non-critical extension?
(current draft only explores new OID for now, but see below…)

more discussion…
Discussion of Non-critical extension:
 Old devices (who do not recognice extension) can ignore this;
 New devices (who recognice extension) can use this as follows:

(extnID, critical, extnValue)=(modified signing, false, [])
is sufficient to indicate modified signing procedure with ECDSA* for
prime-order curves (virtually all current ECDSA deployments)

richer definition allows speed-ups to apply also to other signature schemes, e.g.,
Chinese SM2 signatures, German ECGDSA scheme, GOST R34.10-2012 (RFC 7091)

struik-lamps-verification-friendly-ecdsa

Conclusions & Question to Group
Summary:
 ECDSA verification can take advantage of speed-ups, similarly

to EdDSA, both in single verify and batch verify case
 Techniques trivial to use with all prime-order curves (roughly

all existing deployments), for those verifying devices that wish this
 Techniques easy to extend for Chinese, German, Russian signature

schemes
 Speed-ups deployed in V2V (P1609.2); useful for servers with

more widespread use client certificates
Techniques known since 2005; earlier proposal @CFRG-78 (July 2010)

Question to Group:
 Is this useful to group? Any thoughts on transitioning options? Etc.
 Would this be a suitable as WG document? (could be quick project)

struik-lamps-verification-friendly-ecdsa

