Verification-Friendly ECDSA

draft-struik-lamps-verification-friendly-ecdsa-01

René Struik

Struik Security Consultancy <u>E-mail:</u> rstruik.ext@gmail.com

IETF 110 – virtual Prague, Czech Republic, March 2021

Outline

- 1. ECC Signature Schemes:
 - ECDSA, EdDSA
 - Implementation details
 - ECDSA*
- 2. Speed-ups:
 - Verification with ECDSA vs. with ECDSA*
 - How to get from ECDSA to ECDSA*?
- 4. ECDSA* with reuse of existing ECDSA standards
- 5. Conclusions

ECC Signature Algorithms (1)

NIST curves:

Curve model: Weierstrass curve $y^2 = x^3 + a \cdot x + b \pmod{p}$ Curve equation: $G=(G_x, G_y)$ Base point: addition formulae using, e.g., mixed Jacobian coordinates Scalar multiplication: both coordinates of point P=(X, Y) (affine coordinates) Point representation: 0x04 || X || Y in most-significant-bit/octet first order NIST P-256 (ANSI X9.62, NIST SP 800-56a, SECG, etc.); Examples: Brainpool256r1 (RFC 5639) ECDSA: <u>r || s</u> in most-significant-bit/octet first order Signature: Signing equation: $e = s \cdot k + d \cdot r \pmod{n}$, where $e = \operatorname{Hash}(m)$, R = k G, $R \rightarrow r$ R' = (e/s) G + (r/s) Q, where Q = d G; check that $R' \rightarrow r$ Verification: Example: ECDSA, w/ P-256 and SHA-256 (FIPS 186-4, ANSI X9.62, etc.)

Note:

struik-lamps-verification-friendly-ecdsa

message *m* pre-hashed

ECC Signature Algorithms (2)

CFRG curves:

Curve model:	twisted Edwards curve
Curve equation:	$a \cdot x^2 + y^2 = 1 + d \cdot x^2 \cdot y^2 \pmod{p}$
Base point:	$G=(G_x, G_y)$
Scalar multiplication:	Dawson formulae, using extended coordinates (X: Y: T: Z)
Point representation:	compressed point <i>P</i> =(<i>Y</i> , <i>X'</i>), where <i>X'</i> =lsb(<i>X</i>)
	<u>Y</u> <u>X</u> '
Examples:	Edwards25519, Edwards448 (RFC 7748)
EdDSA:	
Signature:	<u>R</u> <u>s</u>
Signing equation:	<i>s</i> = <i>k</i> + <i>e</i> · <i>d</i> (mod <i>n</i>), where <i>e</i> =Hash(<u><i>Q</i> <i>R</i> <i>m</i>), <i>R</i>=<i>k G</i></u>
Verification:	s G = R + e Q, where $Q = d G$
Example:	Ed25519-SHA-512, Ed448-SHAKE-256 (RFC 8032)
Notes:	Deterministic Schnorr signature, where <i>k</i> =Hash (<i>d</i> ' <i>m</i>)
	Variant w/ pre-hashing uses Hash(<i>m</i>) instead of m
st	ruik-lamps-verification-friendly-ecdsa

Implementation Detail (1)

Aspect:	ECDSA	EdDSA	
Curve model:	Weierstrass	Edwards	
Base point:	affine	affine	
Internal coord:	Jacobian	extended	
Formulae:	Jacobian	Dawson	
Wire format:	(<u>r</u> , <u>s</u>)	(<u>R</u> , <u>s</u>)	
@signing:			
#message passes:	once	twice	
signing key R:	offline	inline	
inversions mod <i>n</i> :	once	none	
@verification:			
single verification batch verification	no speed-ups no speed-ups	speed-ups speed-ups	APPLICATION NOTE: Batch verification of certificate chains; Batch sanity checks

Implementation Detail (1)

Aspect:	ECDSA	EdDSA	
Curve model:	Weierstrass	Edwards	
Base point:	affine	affine	
Internal coord:	Jacobian	extended	NOTE:
Formulae:	Jacobian	Dawson	
Wire format:	(<u>r</u> , <u>s</u>)	(<u><i>R</i></u> , <u>s</u>)	EdDSA is full-Schnorr signature, which
@signing:			are also defined for
#message passes:	once	twice	Weierstrass curves
signing key R:	offline	inline	Not standardized
inversions mod <i>n</i> :	once	none	with IETF 🙁
@verification:			Standardized with
single verification	no speed-ups	speed-ups	BSI (as short-Schnorr
batch verification	no speed-ups	speed-ups	Signature (<i>e,s</i>))

Implementation Detail (2)

Aspect:	ECDSA	EdDSA	ECDSA*
Curve model:	Weierstrass	Edwards	Weierstrass
Base point:	affine	affine	affine
Internal coord:	Jacobian	extended	Jacobian
Formulae:	Jacobian	Dawson	Jacobian
Wire format:	(<u>r</u> , <u>s</u>)	(<u>R</u> , <u>s</u>)	(<u>R</u> , <u>s</u>)
@signing:			
#message passes:	once	twice	once
signing key R:	offline	inline	offline
inversions mod <i>n</i> :	once	none	once
@verification:			
single verification	no speed-ups	speed-ups	speed-ups 😊
batch verification	no speed-ups	speed-ups	speed-ups 😊

Verification Detail (1)

ECDSA:

Signature: Signing equation: Verification:

ECDSA*:

Signature: Signing equation: Verification: <u>*r*</u> || <u>*s*</u> in most-significant-bit/octet first order $e = s \cdot k + d \cdot r \pmod{n}$, where $e = \operatorname{Hash}(m)$, R = k G, $R \to r$ compute R' = (e/s) G + (r/s) Q; check that $R' \to r$

<u>*R*</u> || <u>s</u> in most-significant-bit/octet first order $e = s \cdot k + d \cdot r \pmod{n}$, where $e = \operatorname{Hash}(m)$, R = k G, $R \to r$ compute <u> $R \to r$ </u>; compute <u> $R \to R$ </u> check that R = (e/s) G + (r/s) Q, where Q = d G

Alternative verify: speed-ups: $\sim 1.3x$ $\geq 2x$

 λ (- *R* + (*e/s*) *G* + (*r/s*) *Q*) = *O* for any $\lambda \neq 0$ make scalars small, which <u>halves</u> ECC doubles (single verify) amortize ECC doubles <u>accross all</u> (batch verify)

ECDSA and ECDSA* the same if one could reverse $R' \rightarrow r$ mapping, but $\pm R' \rightarrow r$ struik-lamps-verification-friendly-ecdsa⁸

How to Get from ECDSA to ECDSA*?

ECDSA and ECDSA* the same if one could reverse $R' \rightarrow r$ mapping, but $\pm R' \rightarrow r$

This follows from the fact that $R' \rightarrow r$ is defined as $r:=x(\mathbb{R}) \pmod{n}$

For all prime-order curves, these pre-images come in pairs {R, -R} in practice

Modified ECDSA signing procedure:

- <u>Step 1</u>: Generate ECDSA signature (*r*, *s*) of message m;
- <u>Step 2</u>: Change (r, s) to (r,-s) if ephemeral key R has y-coordinate with odd parity

Notes:

- If (r, s) is a valid ECDSA signature, then so is (r, -s) the so-called malleability
- Any party can perform Step 2, since for valid signatures R:=(e/s) G + (r/s) QThis party does not have to be the signer and this can be done retroactively
- If verifyer knows that modified signing produre was used, $R' \rightarrow r$ has unique preimage in practice for all prime-order curves (implicit point compression R)

Transitioning towards ECDSA* (1)

ECDSA with modified signing procedure allows implementation of ECDSA* with existing ECDSA standards (for prime-order curves), provided the verifying device knows this modified signing procedure was indeed used

Option #1: "Big Bang"

- Implement modified signing procedure retroactively for all existing ECDSA signatures;
- Generate all new ECDSA signatures with the modified signing procedure (i.e., mothball the old way of generating ECDSA signatures)

Option #2: mandate in specifications

- This has same effect as Option #1, for a particular protocol
 <u>Question</u>: does this entice implementors enough to adopt speed-ups en masse?
- **Option #3: define new label for ECDSA***
- New devices who recognice label can uniquely recover R from r
- Old devices that have parser that replaces label ECDSA* with label ECDSA as preprocessing step can still process ECDSA signatures as usual <u>Question:</u> with PKIX, is new OID best, or non-critical extension?

Transitioning towards ECDSA* (2)

From previous slide:

Option #3: define new label for ECDSA*

- New devices who recognice label can uniquely recover R from r
- Old devices that have parser that replaces label ECDSA* with label ECDSA as preprocessing step can still process ECDSA signatures as usual <u>Question:</u> with PKIX, is new OID best, or non-critical extension? (current draft only explores new OID for now, but see below...)

more discussion...

Discussion of Non-critical extension:

- Old devices (who do not recognice extension) can ignore this;
- New devices (who recognice extension) can use this as follows: (extnID, critical, extnValue)=(modified signing, false, [])

is sufficient to indicate modified signing procedure with ECDSA* for prime-order curves (virtually all current ECDSA deployments) richer definition allows speed-ups to apply also to other signature schemes, e.g., Chinese SM2 signatures, German ECGDSA scheme, GOST R34.10-2012 (RFC 7091) struik-lamps-verification-friendly-ecdsa

Conclusions & Question to Group

Summary:

- ECDSA verification can take advantage of speed-ups, similarly to EdDSA, both in single verify and batch verify case
- Techniques trivial to use with all prime-order curves (roughly all existing deployments), for those verifying devices that wish this
- Techniques easy to extend for Chinese, German, Russian signature schemes
- Speed-ups deployed in V2V (P1609.2); useful for servers with more widespread use client certificates

Techniques known since 2005; earlier proposal @CFRG-78 (July 2010)

Question to Group:

- Is this useful to group? Any thoughts on transitioning options? Etc.
- Would this be a suitable as WG document? (could be quick project)