LPWAN WG

WG Chairs:
Alexander Pelov a@ackl.io
Pascal Thubert pthubert@cisco.com

AD: Eric Vyncke
<evyncke@cisco.com>
Note Well

This is a reminder of IETF policies in effect on various topics such as patents or code of conduct. It is only meant to point you in the right direction. Exceptions may apply. The IETF's patent policy and the definition of an IETF "contribution" and "participation" are set forth in BCP 79; please read it carefully.

As a reminder:

• By participating in the IETF, you agree to follow IETF processes and policies.
• If you are aware that any IETF contribution is covered by patents or patent applications that are owned or controlled by you or your sponsor, you must disclose that fact, or not participate in the discussion.
• As a participant in or attendee to any IETF activity you acknowledge that written, audio, video, and photographic records of meetings may be made public.
• Personal information that you provide to IETF will be handled in accordance with the IETF Privacy Statement.
• As a participant or attendee, you agree to work respectfully with other participants; please contact the ombudsteam (https://www.ietf.org/contact/ombudsteam/) if you have questions or concerns about this.

Definitive information is in the documents listed below and other IETF BCPs. For advice, please talk to WG chairs or ADs:

BCP 9 (Internet Standards Process)
BCP 25 (Working Group processes)
BCP 25 (Anti-Harassment Procedures)
BCP 54 (Code of Conduct)
BCP 78 (Copyright)
BCP 79 (Patents, Participation)

https://www.ietf.org/privacy-policy/ (Privacy Policy)
Reminder:

Minutes are taken *
This meeting is recorded **
Presence is logged ***

* All: Please contribute online to the minutes at: https://codimd.ietf.org/notes-ietf-110-lpwan
** Recordings and Minutes are public and may be subject to discovery in the event of litigation
*** Based on Meetecho Attendance Record. You can log once and only once to each session.
Minute takers, jabber scribes

• Minutes
 – CodiMD: https://codimd.ietf.org/notes-ietf-110-lpwan
 – Minute takers volunteers?

• Remote participation
 – Meetecho: https://meetings.conf.meetecho.com/ietf110/?group=lpwan&short=&item=1
 – Jabber: lpwan@jabber.ietf.org
 • Jabber scribe volunteers?

• Mailing list: lp-wan@ietf.org
 – To subscribe: https://www.ietf.org/mailman/listinfo/lp-wan

• Meeting materials: https://datatracker.ietf.org/meeting/110/session/lpwan
Agenda bashing

15:30 Opening, agenda bashing (Chairs) 5mn
 • Note-Well, Scribes, Agenda Bashing
 • Status of drafts
 • Presenters: The Chairs

15:35 LPWAN Architecture and general newcomer presentation 15mn
 • Presenter: Alexander Pelov
 • Associated drafts: draft-pelov-lpwan-architecture

15:50 Yang Data Model for SCHC 10mn
 • Presenter: Laurent Toutain
 • Associated drafts: draft-ietf-lpwan-schc-yang-data-model

16:00 New ideas for SCHC-over-SigFox 15mn
 • Presenters: Juan Carlos Zuniga / Sergio Aguilar
 • Associated drafts: draft-ietf-lpwan-schc-over-sigfox
Agenda bashing (cont.)

16:15 CoAP-over-SCHC
 • Presenter: Ana Minaburo
 • Associated drafts: draft-ietf-lpwan-coap-static-context-hc

16:20 SCHC-over-PPP
 • Presenters: Pascal Thubert
 • Associated drafts: draft-thubert-intarea-schc-over-ppp

16:25 AOB

16:30 Meetecho ends
<table>
<thead>
<tr>
<th>Date</th>
<th>Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 2022</td>
<td>Produce a Standards Track document for SCHC over NBIOT</td>
</tr>
<tr>
<td></td>
<td>draft-ietf-lpwan-schc-over-nbiolet</td>
</tr>
<tr>
<td>Oct 2021</td>
<td>Produce a Standards Track document for SCHC over SigFox</td>
</tr>
<tr>
<td></td>
<td>draft-ietf-lpwan-schc-over-sigfox</td>
</tr>
<tr>
<td>Jul 2021</td>
<td>Produce a Standards Track document to enable operations, administration</td>
</tr>
<tr>
<td></td>
<td>and maintenance (OAM) to the LPWAN device, including support for delayed</td>
</tr>
<tr>
<td></td>
<td>or proxied liveness verification (Ping)</td>
</tr>
<tr>
<td>Feb 2021</td>
<td>Produce a Standards Track document to define the generic data models</td>
</tr>
<tr>
<td></td>
<td>to formalize the compression and fragmentation contexts for LPWANs</td>
</tr>
<tr>
<td>Dec 2020</td>
<td>Produce Standard Track documents to apply SCHC IPv6/UDP over the baseline</td>
</tr>
<tr>
<td></td>
<td>technologies</td>
</tr>
<tr>
<td>May 2020</td>
<td>Perform SCHC Maintenance, including enabling SCHC mechanisms for Upper</td>
</tr>
<tr>
<td></td>
<td>layer Protocols</td>
</tr>
</tbody>
</table>
Document's advancement

<table>
<thead>
<tr>
<th>Draft</th>
<th>Title</th>
<th>Date</th>
<th>Status</th>
<th>IPR</th>
<th>AD / Shepherd</th>
</tr>
</thead>
<tbody>
<tr>
<td>draft-ietf-lpwanschc-00</td>
<td>"OAM for LPWAN using Static Context Header Compression (SCHC)"</td>
<td>2020-11-02</td>
<td>I-D Exists</td>
<td>14 pages</td>
<td></td>
</tr>
<tr>
<td>draft-bethel-lpwanschc-00</td>
<td>"Static Context Header Compression (SCHC) Architecture"</td>
<td>2021-01-19</td>
<td>I-D Exists</td>
<td>6 pages</td>
<td></td>
</tr>
</tbody>
</table>

Related Internet-Drafts (2 hits)

<table>
<thead>
<tr>
<th>RFCs (2 hits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 8576 (was draft-ietf-lpwanschc)</td>
</tr>
<tr>
<td>Informational RFC</td>
</tr>
<tr>
<td>Suresh Krishnan</td>
</tr>
<tr>
<td>Alexander Pelov</td>
</tr>
</tbody>
</table>

SCHC over PPP work transferred to intarea WG

EDIT = Awaiting editing or being edited

RFC-EDITOR = Undergoing final internal review before AUTH48
LPWAN Architecture and general newcomer presentation

Alexander Pelov (a@ackl.io)
Pascal Thubert (pthubert@cisco.com)
Ana Minaburo (ana@ackl.io)
Low-Power Wide-Area Networks
Low-Power Wide-Area Networks

25 mW transmission power

20 years on simple battery
Low-Power Wide-Area Networks

15-50 km rural outdoor
2-3 km urban indoor
Low-Power Wide-Area Networks

- No scheduling
- Star topology
- ALOHA
- Device-initiated com
- Huge densities
- Asymmetric links
- Low throughput
Low-Power Wide-Area Networks

License free

In licensed spectrum

Duty cycling

Collisions

Acknowledgements

Data-over-NAS

Guard-bands

In-band
Collisions

License free

Duty cycling

In licensed spectrum

Acknowledgements

Guard-bands

Star topology

Data-over-NAS

ALOHA

25 mW transmission power

20 years on simple battery

15-50 km rural outdoor

2-3 km urban indoor

Device-initiated com

Huge densities

Asymmetric links

Low throughput

100 bps

(50 kbps max)

12 byte payload

(typically 50 bytes)

140 messages

uplink

4 messages

downlink

X 1%
RFCC 8376 : LPWAN Architecture
<table>
<thead>
<tr>
<th>Function/Technology</th>
<th>LoRaWAN</th>
<th>NB-IoT</th>
<th>Sigfox</th>
<th>Wi-SUN</th>
<th>IETF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor, Actuator, device, object</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End Device</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User Equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End Point</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaf Node</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device (DEV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transceiver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gateway</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evolved Node B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base Station</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router Node</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio Gateway</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Server</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network Server</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDN GW/ SCEF*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Border Router</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network Gateway (NGW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security Server</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Join Server</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home Subscriber Server</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Registration Authority</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authent. Server</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPWAN- AAA Server</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application Server</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application Server</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network Application</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application (App)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SCHC Architecture

• Provide the reference architecture
 – Modes:
 • SCHC Device/SCHC Gateway
 • SCHC Peers

• RFC 8724 and Rules
 – Introduces Yang data model
 – Discusses rule creation and update
 – Discusses rule installation and discovery
SCHC Architecture

Device Application

End-Device

Network Application

Application Server
SCHC Architecture

LPWAN
Radio Gateways (RGW)
SCHC Architecture

Network Gateway (NGW)
SCHC Architecture

- SCHC Device
- SCHC Gateway
- NGW (Network Gateway)
- IP (Internet Protocol)
- IP/UDP/CoAP

AAA, Perf, Mgmt
SCHC Architecture

SCHC Device

CORECONE

SCHC Gateway

Rule Manager

Rules

SCHC CD-FR

IP

AAA

Perf

Mgmt
SCHC Architecture

SCHC Device

SCHC Gateway

Rule Manager

Rules

SCHC CD-FR

IP

IP/UDP/CoAP

CORECONF

AAA

Perf

Mgmt
SCHC Architecture

SCHC Device

- Rule Manager
- Rules
- SCHC CD-FR

SCHC Gateway

- Rule Manager
- Rules
- SCHC CD-FR

IP/UDP/CoAP

CORECONF
SCHC Architecture

Protocol

SCHC Peer

Rule Manager
Rules
SCHC CD-FR

CORECONF

Rule Manager
Rules
SCHC CD-FR

Protocol

SCHC Peer
Example of Network-level SCHC
Example of Network-level SCHC

IP Stack

Rule Manager

Rules

SCHC CD-FR

CORECONF/OSCORE

CRUD

Compressed Packets

SCHC Peer / SCHC Device

LPWAN@IETF110

SCHC Peer / SCHC Gateway
Example of Network-level SCHC

- Rule Manager
- Rules
- SCHC CD-FR
- IP Stack
- Application

CORECONF/OSCORE

CRUD

Compressed Packets

SCHC Peer / SCHC Device

SCHC Peer / SCHC Gateway
What’s new from -03

• Clarifications

• Goal :
 – Define a way to uniquely refers to an ID
 • Field ID
 • MO, CDA
 • Fragmentation parameter

 – Define a structure for rules
 • Inter exchange (see architecture draft)
 • Not internal representation

• Don’t focus on size, this is an abstract representation:
 – CORECONF will help to reduce this size
Identifiers
// -- RCS algorithm types

identity RCS-algorithm-base-type {
 description "identify which algorithm is used to compute RSC. The algorithm defines also the size of the RSC field."
}

identity RFC8724-RCS {
 description "CRC 32 defined as default RCS in RFC8724."
 base RCS-algorithm-base-type;
}

typedef RCS-algorithm-type {
 type identityref {
 base RCS-algorithm-base-type;
 }
}
Id types:

- **field-id-type**: IPv6, UDP, CoAP, OSCORE, ICMPv6 (56 values)
- **field-length-type**: union int64 and identityref (2 values)
- **direction-indicator-type**: 3 values
- **matching-operator-type**: 4 values
- **comp-decomp-action-type**: 8 values
- **RCS-algorithm-type**: 1 value
- **fragmentation-mode-type**: 3 values
- **ack-behavior-type**: 3 values
- **all1-data-type**: 3 values
Field id

identity /field-id-base-type/fid-icmpv6-checksum
identity /field-id-base-type/fid-icmpv6-code
identity /field-id-base-type/fid-icmpv6-identifier
identity /field-id-base-type/fid-icmpv6-sequence
identity /field-id-base-type/fid-icmpv6-type
identity /field-id-base-type/fid-ipv6-applid
identity /field-id-base-type/fid-ipv6-appprefix
identity /field-id-base-type/fid-ipv6-deviid
identity /field-id-base-type/fid-ipv6-devprefix
identity /field-id-base-type/fid-ipv6-flowlabel
identity /field-id-base-type/fid-ipv6-hoplimit
identity /field-id-base-type/fid-ipv6-nextheader
identity /field-id-base-type/fid-ipv6-payloadlength
identity /field-id-base-type/fid-ipv6-trafficclass
identity /field-id-base-type/fid-ipv6-trafficclass-ds
identity /field-id-base-type/fid-ipv6-trafficclass-ecn
identity /field-id-base-type/fid-ipv6-version
identity /field-id-base-type/fid-udp-app-port
identity /field-id-base-type/fid-udp-checksum
identity /field-id-base-type/fid-udp-dev-port
identity /field-id-base-type/fid-udp-length
Field id: coap

- Removed « payload marker »
- Added OSCORE
- Added ICMPv6
Structures
SCHC Data Model - Frag

module: schc
 ++-rw schc
 ++-rw version? uint64
 ++-rw rule* [rule-id rule-length]
 ++-rw rule-id uint32
 ++-rw rule-length uint8
 ++-rw (nature)?
 ++-(fragmentation)
 ++-rw direction schc:direction-indicator-type
 ++-rw dtagsize? uint8
 ++-rw wsize? uint8
 ++-rw fnsize
 ++-rw RCS-algorithm? RCS-algorithm-type
 ++-rw maximum-window-size? uint16
 ++-rw retransmission-timer? uint64
 ++-rw inactivity-timer? uint64
 ++-rw max-ack-requests? uint8
 ++-rw maximum-packet-size? uint16
 ++-rw fragmentation-mode schc:fragmentation-mode-type
 ++-rw (mode)?
 ++-:(no-ack)
 ++-:(ack-always)
 ++-:(ack-on-error)
 ++-rw tile-size? uint8
 ++-rw tile-in-All1? schc:all1-data-type
 ++-rw ack-behavior? schc:ack-behavior-type

Not in RFC 8724
Up or down, bi forbiden
Frag header, only FCN is mandatory
Mandatory: 1..max
Optional : 0..max
noAck, AA, AoE
No, Yes, Sender Choice
All0, All1, Always
SCHC Data Model - Compression

Optional?
What’s next

• Draft is stable and has been discussed in interim meetings.

• Ready for Working Group Last Call
draft-ietf-lpwan-schc-over-sigfox-05 &
PySCHC Implementation

Juan Carlos Zúñiga (Sigfox), Carles Gómez, Sergio Aguilar (UPC),
Laurent Toutain (IMT-Atlantique),
Sandra Céspedes, Diego Wistuba (U Chile)
Updates

• Hackathon: Off-line coding between UChile and UPC
 • ACK-on-Error and No-ACK SCHC/Sigfox parameter optimizations
 • Error conditions tested

• Last draft updates (rev 05)
 • Added message sequence examples to explain different ACK-on-Error and No-ACK SCHC/Sigfox scenarios
 • Update co-authors’ list

• Compound SCHC ACK message proposal (see next slides)
Compound SCHC ACK - Introduction

• ACK-on-Error over Sigfox:
 • Errors in intermediate windows “may” generate at least one ACK
 • Errors in the last window generate at least 2 ACKs
 • Sigfox DL payload is fixed to 64 bits
• When errors occur over multiple windows, the number of ACKs can be reduced by reporting losses from several windows with a single ACK
Compound SCHC ACK – Principles and Advantages

• The Compound ACK:
 • Only reports windows with fragment losses
 • Includes W field for each bitmap
 • May not fit all bitmaps of all windows for a SCHC packet
 • Has variable size
 • Compatible with SCHC Receiver Abort message format and ACK Failure message format (RFC8724)

• ACK Reduction when using Compound ACK:
 • Compound ACK messages = Regular SCHC ACKs - (# of windows – 1)

Example

SCHC Packet: 14 tiles
Window size: 7 tiles
2 SCHC ACK Messages
Compound SCHC ACK – Message Format

• Compound ACK message format (only for ACK Failure messages) with SCHC Fragment losses in all windows:

W = 1

SCHC Packet 14 tiles
Window size: 7 tiles

Fixed, same as RFC8724

W + bitmap groups as windows with losses (that can be fitted)
Compound ACK – Message Format

- W + Bitmap groups are ordered from the smallest window number to the largest.
- The window numbered 00 (if present) must always be between the Rule ID and C bit to avoid confusion with padding bits.

```
[ Rule ID | W | C-0 | Bitmap | W | Bitmap | (P-0) ]
000 00 0 111101 01 111011 42 padding bits
```

W = 0

W = 1

SCHC Packet: 14 tiles
Window size: 7 tiles
Thanks!
Questions? Comments?
Backup slides
Example – SCHC Packet 28 tiles

Window size: 7 tiles
5 SCHC ACK Messages

Sender Receiver
|-----W=0, FCN=6-----|
|-----W=0, FCN=5-----|
|-----W=0, FCN=4-----|
|-----W=0, FCN=3-----|
|-----W=0, FCN=2-X----|
|-----W=0, FCN=1-----|
|-----W=0, FCN=0-----|

W = 00

<-- ACK, W=0, C=0 -- Bitmap: 111011

(no ACK)

W = 01

<-- ACK, W=1, C=0 -- Bitmap: 111101

(no ACK)

Sender Receiver
|-----W=2, FCN=6-----|
|-----W=2, FCN=5-----|
|-----W=2, FCN=4-X----|
|-----W=2, FCN=3-----|
|-----W=2, FCN=2-----|
|-----W=2, FCN=1-----|
|-----W=2, FCN=0-----|

W = 10

3

<-- ACK, W=2, C=0 -- Bitmap: 1101111

(no ACK)

W = 11

2

<-- ACK, W=1, C=0 -- Bitmap: 111101

(no ACK)

Sender Receiver
|-----W=3, FCN=6-----|
|-----W=3, FCN=5-----|
|-----W=3, FCN=4-----|
|-----W=3, FCN=3-----|
|-----W=3, FCN=2-X----|
|-----W=3, FCN=1-----|
|-----W=3, FCN=0-----|

W = 12

4

<-- ACK, W=3, C=0 -- Bitmap: 1110111

(Sender)

<-- ACK, W=3, C=1 --

(End)
ACK Reduction:

- From 5 ACKs to 2 ACKs

SCHC Packet 28 tiles

Window size: 7 tiles

2 SCHC ACK Messages

<table>
<thead>
<tr>
<th>Sender</th>
<th>Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example – SCHC Packet 28 tiles

- **W = 00**
 - *From 5 ACKs to 2 ACKs*
 - "Compound ACK"
 - "W = 3, C = 1"

- **W = 01**
 - *From 5 ACKs to 2 ACKs*
 - "Compound ACK"
 - "W = 3, C = 1"

Retransmission
Compound ACK – SCHC Packet 28 tiles

- $W = 0$
- $W = 1$
- $W = 2$
- $W = 3$

- W + Bitmap groups for all windows with losses
- ACK Reduction
 - Number of windows of the SCHC packet: 4
 - ACK reduction: 3 ACKs

SCHC Packet 28 tiles
Window size: 7 tiles
Example – SCHC Packet: 14 tiles

Window size: 7 tiles
3 SCHC ACK Messages

W = 00
 Sender
 |-----W=0, FCN=6------|
 |-----W=0, FCN=5------|
 |-----W=0, FCN=4------|
 |-----W=0, FCN=3------|
 |-----W=0, FCN=2-X------|
 |-----W=0, FCN=1------|

Receiver
 |-----W=0, FCN=0------|

Window size: 7 tiles
2 SCHC ACK Messages

W = 01
 Sender
 |-----W=1, FCN=6------|
 |-----W=1, FCN=5------|
 |-----W=1, FCN=4------|
 |-----W=1, FCN=3------|
 |-----W=1, FCN=2------|
 |-----W=1, FCN=1-X------|
 |-----W=1, FCN=1------|

Receiver
 |-----W=1, FCN=7------|

All fragments received

(End)

Retransmission

(End)
Testing Network Architecture

- PySCHC SW
- Pycom (LoPy4)
- Sigfox Network
- Google Cloud *

* https://cloud.google.com/community/tutorials/sigfox-gw
draft-ietf-lpwan-coap-static-context-hc-19

Ana Minaburo (ana@ackl.io)
Laurent Toutain (laurent@imt-atlantique.fr)
Ricardo Andreasen (randreasen@fi.uba.ar)
Status

• New Ballot Position Update: RFC Ed Queue
 • Status: EDIT

• Thanks to Benjamin Kaduk
From version 17 to version 19

• V-16
 • New Section 2, Uses Cases
 • New Section 6, CoAP extensions
 • New Section 4, CoAP header fields Compression
 • New Section 5, CoAP Options

• V-17 & V-18
 • New Section CoAP Options
 • Uri-Path and Uri-Query variable length unit in bytes

• V-19
 • New Security Section
 • Update the Examples for the variable length

• Many Editorial Nits
Next steps

• AUTH48... (RFC9024)?

• Questions?
draft-thubert-intarea-schc-over-ppp

Authors:
Pascal Thubert <pthubert@cisco.com>
• SCHC over PPP (and then PPP over foo)
• Enables SCHC over
 – Serial, 3GPP
 – Ethernet with PPPoE, Wi-Fi with Ethernet
• Signals
 – A new compression for PPP (Updates RFC 5172)
 – The URL of the data model for the compression
 – Dependency on draft-ietf-lpwan-schc-yang-data-model
Resulting Packet (no Frag example)
Draft status: Stable

• Need refresh – expires March 26th
• The RuleID for a compression rule is expressed as 2 bytes.
• The first (leftmost) 2 bits of that RuleId MUST be set to 0
• Frag: Only No-Ack mode => no out-of-order packet
 – If used with DetNet => may require PREOF reordering
• The RuleID for a fragmentation rule is expressed as 4 bits
 – Reserved 1111 for NO ACK
• Review from LPWAN cc INT AREA ?
Impact on SCHC Architecture

- PPP creates a peerwise relationship as opposed to device/gateway
- None of the end points own the compression rules
- Both fetch them from the same place through URL
Discussion

- Co Authors?
- Add applicability statement?
- Possible extensions?
AOB ?