
MASQUE
Using QUIC Datagrams with

HTTP/3
draft-ietf-masque-h3-datagram

IETF 110 – Virtual Prague – 2021-03

 Lucas Pardue – lucaspardue.24.7@gmail.com
1

https://www.ietf.org/archive/id/draft-ietf-masque-h3-datagram-00.html

draft-ietf-masque-h3-datagram – IETF 110 – Virtual – 2021-03

The 15-second summary
draft-ietf-masque-h3-datagram adopted

HTTP/3 DATAGRAM is like QUIC DATAGRAM,
but the frame payload must start with a Flow ID!

Datagram flows are logical bidirectional exchanges
of HTTP/3 DATAGRAMS. Supports demultiplexing.

Use of flows benefits from peer coordination i.e.
signalling what a flow ID maps to. So associate
to HTTP messages.

2

draft-ietf-masque-h3-datagram – IETF 110 – Virtual – 2021-03

Design premise 1: Flow ID
All flows have an identifier, value is chosen by a flow identifier allocation service

Flow ID is a 62-bit integer (0 to 2^62-1)

When carried in frame, encoded as a QUIC variable-length integer

When carried in header, encoded as an sf-int (0 to 10^15-1)

3

draft-ietf-masque-h3-datagram – IETF 110 – Virtual – 2021-03

Design premise 2: H3_DATAGRAM setting
Some HTTP/3 applications might not want the demultiplexing afforded by flow ID

● Might want other rules for using QUIC DATAGRAM frame payload when
HTTP/3 is negotiated

H3_DATAGRAM setting allows endpoints to negotiate the use of flow IDs defined
in this specification

4

draft-ietf-masque-h3-datagram – IETF 110 – Virtual – 2021-03

Design decision: associating flows with streams

5

Reuse the HTTP request stream ID

Simpler

Forces 1-to-1 mapping from request to ID

Only uses 25% of available IDs
Leads to longer varint encoding

Datagram-Flow-Id HTTP Header

Distinct namespace

Requires explicitly negotiating via header

Allows many-to-1 mapping from request to ID
Used by draft-pauly-masque-quic-proxy

Allows potentially reusing flow IDs

More extensible

We need to pick one, other drafts depend on us.

draft-ietf-masque-h3-datagram – IETF 110 – Virtual – 2021-03

Multiplicity
1. 1 stream - 1 flow

a. Minimum: all implementations of HTTP/3 DATAGRAM must support this

2. Many streams - 1 flow
a. Reference a flow established by one HTTP message from another, see

draft-pauly-masque-quic-proxy

3. 1 stream - many flows
a. Establish many flows via a single HTTP message.
b. One mandatory flow for the standard behaviour, can always rely on it
c. Additional flows enhance the behaviour of the mandatory flow
d. Additional flows might be extensions that are not supported by the peer.

i. Datagram-flow-id echoing allows a client to detect if a server does not support an
extension.

6

draft-ietf-masque-h3-datagram – IETF 110 – Virtual – 2021-03

Supporting multiplicity with sf-list
Datagram-Flow-Id = sf-list supports all multiplicity requirements

In order to support ignoring additional flow IDs for unknown extensions, spec
defines the notion of names, encoded as the first parameter of each list member.
The mandatory flow is unnamed.

Datagram-Flow-Id = 2, 4; never-gonna-give-you-up

Under the hood, the “name parameter” is a true sf-bool, whose encoding rules
make it look nice and concise. Imagine it more like

Datagram-Flow-Id = 2, 4; never-gonna-give-you-up=1

7

draft-ietf-masque-h3-datagram – IETF 110 – Virtual – 2021-03

Issue #24 – parameters should be not be names
Use parameters more conventionally and clarify if spec’s current design allows
each item to have more parameters than a name.

Suggestion 1:
 Datagram-Flow-Id = 2, 4; never=give-you-up,

 6; never=let-you-down

Suggestion 2:
 Datagram-Flow-Id = 2, 4; name=never-give-you-up,
 6; name=never-let-you-down

Another alternative ...
8

https://github.com/ietf-wg-masque/draft-ietf-masque-h3-datagram/issues/24

draft-ietf-masque-h3-datagram – IETF 110 – Virtual – 2021-03

Use regular parameters, and reserve a "default" parameter

Datagram-Flow-Id = 42; ecn=not-ect default, 44; ecn=ect0,
 46; ecn=ect1, 48; ecn=ce

- If the proxy doesn't support the ECN extension, it will ignore that parameter and
only use flow ID 42 which is default
- Allows composition of extensions

Datagram-Flow-Id = 42; evilbit=evil never=give-you-up default,
 44; evilbit=nice never=give-you-up,
 46; evilbit=evil never=let-you-down,
 48; evilbit=nice never=let-you-down

Issue #24 - alternate encoding of Datagram-Flow-Id

9

https://github.com/ietf-wg-masque/draft-ietf-masque-h3-datagram/issues/24

draft-ietf-masque-h3-datagram – IETF 110 – Virtual – 2021-03

Issue #24 - pick an option
Can we agree to keep Datagram-Flow-Id, and can we pick a format option?

1. Datagram-Flow-Id = 2, 4; never=give-you-up

2. Datagram-Flow-Id = 2, 4; name=never-give-you-up

3. Datagram-Flow-Id = 2; evilbit=evil never=give-you-up default
 4; evilbit=nice never=give-you-up

10

https://github.com/ietf-wg-masque/draft-ietf-masque-h3-datagram/issues/24

draft-ietf-masque-h3-datagram – IETF 110 – Virtual – 2021-03

Issue #22 – Reusing flow IDs is racy
Flow ID is carried in every frame, using small IDs can be attractive

PR #20 introduced the notion that flow allocation service supports “retire” and
“reuse” of flow IDs.

Application needs to tell the flow allocation service when to retire

Detecting when it is suitable or safe to retire might be hard depending on
implementation. Risk that recycled flow IDs are used incorrectly.

We have a 62-bit integer, do we need the potential complexity for reuse? Is
anyone opposed to dropping this feature?

11

https://github.com/ietf-wg-masque/draft-ietf-masque-h3-datagram/issues/22
https://github.com/ietf-wg-masque/draft-ietf-masque-h3-datagram/pull/20

MASQUE
HTTP/3 DATAGRAM

draft-ietf-masque-h3-datagram

IETF 110 – Virtual Prague – 2021-03

 Lucas Pardue – lucaspardue.24.7@gmail.com

12

https://www.ietf.org/archive/id/draft-ietf-masque-h3-datagram-00.html

