
A YANG Data model for ECA Policy
Management

draft-ietf-netmod-eca-policy-01

Qin Wu(bill.wu@Huawei.com)

Igor Bryskin (i_bryskin@yahoo.com)

Henk Birkholz (henk.birkholz@sit.fraunhofer.de)

Xufeng Liu (xufeng.liu.ietf@gmail.com)

Benoit Claise(benoit@claise.be)

Andy Bierman (andy@yumaworks.com)

Alexander Clemm(ludwig@clemm.org)

Qiufang Ma (maqiufang1@Huawei.com)

Diego R. Lopez(diego.r.lopez@telefonica.com)

Chongfeng Xie (xiechf@ctbri.com.cn)
…

03/11/2021 IETF 110 Netmod Virtual Meeting 1

mailto:andy@yumaworks.com
mailto:ludwig@clemm.org
mailto:maqiufang1@Huawei.com

Recap
• ECA Enables event-based management

– provide a useful method to monitor state change of managed objects

• It uses YANG to express network policy and provides rapid autonomic
responses to specific conditions,
– enabling self-management behaviors, including, self-configuration, self-healing,

self-optimization, and self-protection.

– Four type events are discussed, i.e., server event, datastore event, timer event,
diagnostic event;

• ECA May be realized in two ways:
– Centralized network management has its limitations

• Huge resource consumption due to massive data collection and processing

• slow reaction to the network changes

• Lack control on malfunction device

• Scalability

– Device Self Management: Move network management function to servers in the network
• Provide continuous performance monitoring in the server

• and detect defects and failures and take corrective action in the server.

• Might require state management and “Computational Logic”

03/11/2021 IETF 110 Netmod Virtual Meeting 2

03/11/2021 IETF 110 Netmod Virtual Meeting

Status Update since IETF 109
• draft-ietf-netmod-eca-yang was adopted in January 20 2021

– Two WG adoption calls was issued in the past, one was in Feb 18, 2020,
the second was on December 07, 2020

– Thanks for supporting and commenting…
• Andy Bierman, Jonathan Hansford, Alex Clemm, Qiufang Ma, Chongfeng Xie, Diego R.

Lopez, Xuefeng Liu, Adrian Farrel, Benoit Claise, Igor Bryskin, Henk Birkholz, Yunbo
Yan, Peng Liu, Jan Lindblad, Lingli Deng, Chang Liu, Juergen, Tom Petch, Randy Preshun

– Special thanks to Andy for provide foundation for this document and
providing guidance for the direction of this document.

– A few issues were raised during adoption call, and will require some
further discussion

• Policy based management definition?

• What is an adequate abstraction level to express policies and intent?

• Where are policies executed?

• When to detect and resolve policy conflicts?

• Who is interested in interoperable policy representations / languages?

3

Issue 1: Relationship with I2NSF YANG
capability-data-model

• In RFC8329, ECA is defined as Imperative paradigm related to data packet or data
flow treatment:
– An Event clause is used to trigger the evaluation of the Condition clause of the I2NSF Policy Rule.

– A Condition clause is used to determine whether or not the set of Actions in the I2NSF Policy Rule
can be executed or not.

– An Action clause defines the type of operations that may be performed on this packet or flow.

• The "Event-Condition-Action" (ECA) policy model in [RFC8329] is used as the basis
for the design of the capability model in draft-ietf-i2nsf-capability-data-model;

• In draft-ietf-netmod-eca-policy, similar imperative paradigm is defined
– The event is defined as one related to datastore subscription or event stream subscription.

– Condition: Condition can be seen as a logical test that, if satisfied or evaluated to be true, causes the
action to be carried out.

– Action: Update or invocation on local managed object attributes.

• Conclusion:
– NSF can be an example use case for draft-ietf-netmod-eca-policy (once the technology-specific

information is defined in a model)

03/11/2021 IETF 110 Netmod Virtual Meeting 4

https://tools.ietf.org/html/rfc8329

Issue 2: Abstraction level to express policies
and intent

• Policies need to be readable and hence be expressed at a high level of abstraction
and in a suitable _language_
– High level language we select for policy representation is YANG, expressed by the NMS or controller

– Follow successful story of RMON vs SNMP
• RMON, an extension of SNMP, provides traffic flow data for troubleshooting and the controls necessary to

adjust for better performance from a central console.

• Argument: do you see RMON as a language?

• High-level policy expression may be compiled down into more verbose primitive
representations that are closer to an execution abstraction.
– Primitive representation in the device is script language such as Python or TCL used in the device.

• A common pitfall is to start somewhere in the middle of several layers of
abstraction and then getting stuck with something awkward to put a clean higher
layer abstract onto and to compile things down to _efficient_ instrumentations.
– YANG expression is capable for such a compilation;

– At the current stage, YANG is used for abstraction and representation. YANG is both representative
and implementable.

03/11/2021 IETF 110 Netmod Virtual Meeting 5

Issue 3: Where are policies executed
• The most well-known policy-based management was specified joint by IETF and

DMTF, which consist of four functional elements: Policy Management Tool (PMT),
Policy Decision Point(PDP), Policy Enforcement Point (PEP), Policy repository

03/11/2021 6

Policy
Repository

PMT

PDP

The Management System

PEP

The network device A

PEP

The network device B

Define and Update the Policy
 (LDAP)

Policy Install (COPS/SNMP/NETCONF)

LDAPNotification

Policy
Repository

PMT

PDP

The Management System

Local
PDP

The network device A

PEP

The network device B

Define and Update the Policy
 (LDAP)

Policy Install (COPS/SNMP/NETCONF)

LDAPNotification

PEP
Primitive
language

Local
PDP

Primitive
language

In Network Management

Issue Clarification:
1. In the in-Network management, Management Function is in, or close, to the network element
2. Whether it is traditional network management or In-network management, both policy are enforced or executed
 In the network element.
What is in the scope:
Our ECA policies are executed by the NETCONF/RESCONF server. This document defines the NETCONF/RESTCONF
interface, but not the implementation framework and details.

Issue 4: When to detect and resolve policy conflicts?

• ECA exception is handled at two phases, one is in the ECA XPATH Evaluation, the second is in the
ECA Action execution

• Policy conflict will be detected in the second phase (ECA Action execution) in the device.

• Policy conflict can also be detected in the Policy design/definition stage, i.e., Policy management
tool needs to define a policy which has no conflict with existing policy in the Policy repository in
the management system.

• Last not the least, Diagnostic event can be used to debug the policy conflict before the policy can
be enforced in the network device.

03/11/2021 IETF 110 Netmod Virtual Meeting 7

Extract standard
policy variables

from Event

Mapping Policy
variable into

XPATH variables

ECA XPATH
Evaluation

ECA Exception
Handling

Event Notification
Report Generation and

Sending
ECA Action
Execution

ECA Exception
Handling

NETCONF Server/Local Client

ECA Model

Issue 5: Implementation Experience or
Interest?

• ECA business model?
– Embedded Pre-processing capability in the device product

– Provide telemetry automation in the telemetry data source

• Consumer of the ECA interoperability solution
– Self management application, Service assurance application, network visibility

application, FAPS application, etc., which require both the NMS and the device to
support ECA solution

• Is there existing implementation which provide a good basis?
– Cisco IOS: Embedded event management (EEM)

– Huawei CE Product: Open Programmability System (OPS)

– Amazon Simple Notification Service (SNS), S3

• Who is planning to implement?
– Huawei, we are working on implementing ECA model

– Potential Open-Source project “Teraflow” (https://5g-ppp.eu/teraflow/) is investigating.

03/11/2021 IETF 110 Netmod Virtual Meeting 8

https://5g-ppp.eu/teraflow/

03/11/2021 IETF 110 Netmod Virtual Meeting

Follow Up and Next Steps

• Address remaining comments raised during
adoption and in today's meeting.
– Issues 1-5

• Add Implementation Status Section
– Include current examples of ECA usage

– More examples would be most welcome

9

ECA Usage Example

03/11/2021 IETF 110 Netmod Virtual Meeting 10

 A smart filter to suppress duplicated alarm event notification

client

eth0 status is down

eth1 status is down
ECA Logic

…

eth1 status is down

eth0 status is down

eth0 status is down

eth1 status is down

eth1 status is down
…

10

1. Subscribe the server event and Scan all Ethernet interfaces and check
whether the interface status is down
2.Create event occurrence counter to count the occurrence of the same event
3. If the occurrence time exceeds preconfigured threshold, suppress the event
4. If the occurrence time is below the preconfigured threshold, send the same
event notification as one defined in RFC8639.

ECA Logic Design

eth0 status is down

ECA Logic in the self management Device

03/11/2021

IETF 110 Netmod Virtual Meeting

11

Extract standard
policy variables

from Event

Mapping Policy
variable into

XPATH variables

ECA XPATH
Evaluation

ECA Exception
Handling

Event Notification
Report Generation and

Sending
ECA Action
Execution

ECA Exception
Handling

NETCONF Server/Local Client

ECA Model

Event:
Event Name:interface-self-
monitoring

Event Type: Server event

Event Module:IETF-Interface

Event:if:interfaces/if:interface

[if:type=if:gigabitEthernet]

• Policy Variable:
Event-repeat-count =0
interface-statistics-event
=if:interfaces/if:interface
[if:type=if:gigabitEthernet]

Condition:
Event-repeat-count >1
Event-repeat-count <=1
Interface down=
if:interfaces/if:interface
[if:type=if:gigabitEthernet
,
if:oper-status=down]
Interface not down ..

Next-
Period==

True
Exit

Interface
down&&

event-repeat-
count>1

Y

N

Interface
down&&
count<=1

Interface not
down

Event=filtered event;
Count++;

Suppress event;
Next-period=True

Event=filtered event;
Count++;

Next Period=true
Call Custom-Notif

N

Y

Y

Y

N Next-Period== false
Count=0

Exit

Extract policy variable

Map into XPATH
variable

	Slide 1
	Recap
	Status Update since IETF 109
	Issue 1: Relationship with I2NSF YANG capability-data-model
	Issue 2: Abstraction level to express policies and intent
	Issue 3: Where are policies executed
	Issue 4: When to detect and resolve policy conflicts?
	Issue 5: Implementation Experience or Interest?
	Follow Up and Next Steps
	ECA Usage Example
	ECA Logic in the self management Device

