

SDN Heading North: Towards a Declarative Intent-based Northbound Interface

Shiyam Alalmaei, Matthew Broadbent, Yehia Elkhatib, Mehdi Bezahaf, and Nicholas Race

School of Computing and Communications, Lancaster University, United Kingdom

Email: {s.alalmaei, m.broadbent, y.elkhatib, mehdi.bezahaf, n.race}@lancaster.ac.uk

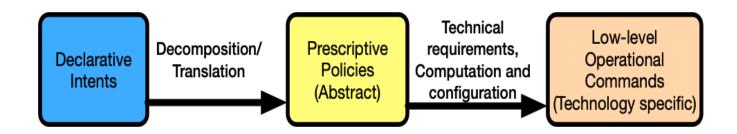
Motivation

Why is the NBI important?

- The success of SDN relies on application developers leveraging its capabilities.
- Hence, the Northbound Interface (NBI) is the key enabler for the realization of the ultimate SDN promise.
- Although Intent-based NBIs are gaining a lot of attention, their development remains in its infancy.

Outline

- Intent-Based NBI Challenges
- Related Work Limitations
- Proposed Intent-Based NBI framework and expressions
- A proof-of-concept cloud CDN use case of a caching intent
- Intent Refinement
- Conclusion & Future Work

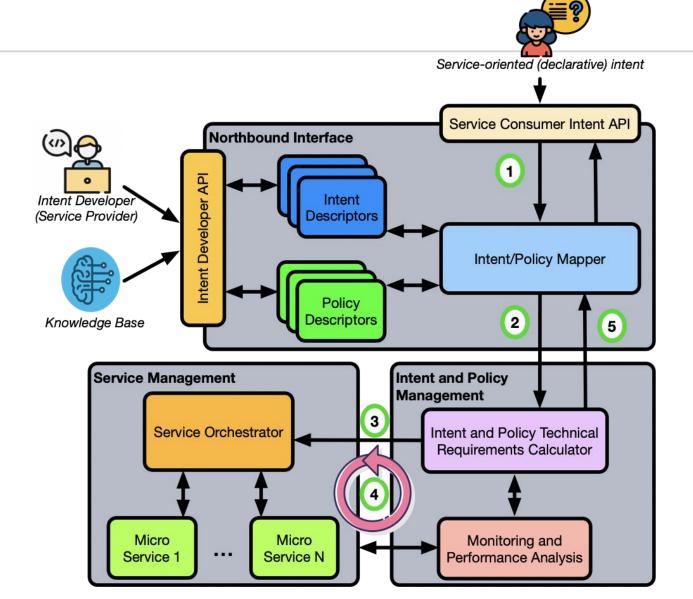

Intents vs. Policies

	Similarities	Differences
Policies ¹	Network and system abstraction	 Prescriptive rules Specify set of Event-Condition-Action (ECA) rules and determine precisely what to do under different circumstances and triggers (how to do?)
		 Used by system experts who can articulate the set of rules System behavior defined proactively
Intents		 Declarative expressions Express desired outcome (what to do?) Can be used by different users including service consumers and non-experts without enumerating rules Could be a learning reactive system

Intent-Based NBIs Challenges

- •Service consumers require *declarative* rather than *prescriptive* intent expressions.
- •Translating service-oriented intents to system operations needs *intermediate interpretation* as policies.

•Intent-based NBI must be *platform-independent* and *extensible*


Related Work Limitations

- In general, current Intent-based NBIs are limited, ad-hoc and vendor-specific.
- They do not allow expressing declarative intents that handle other requirements beyond the network-level.
- Moreover, most current works don't provide the tools to create new intents and map them to lower-level policies.

Intent-Based NBI Framework

Intent-Based NBI Syntax

Service Consumer Intent API

Intent/Policy Mapper

5

2

<SERVICE><RESOURCES><CONJUNCTION><TARGET>

Prescriptive Policies Syntax

 $< SERVICE>< RESOURCES> \\ < POLICY 1>< OPERATOR>< POLICY 2>< OPERATOR> \dots \\ < POLICY <math>k_1>< OPERATOR>< POLICY k_2>< OPERATOR> \dots < POLICY k_m> \} \\ < OPERATOR> \dots < POLICY n>$

<CONDITIONS><ACTIONS><CONSTRAINTS>[<PRIORITY>]

Northbound Interface

@

Intent Developer (Service Provider)

Knowledge Base

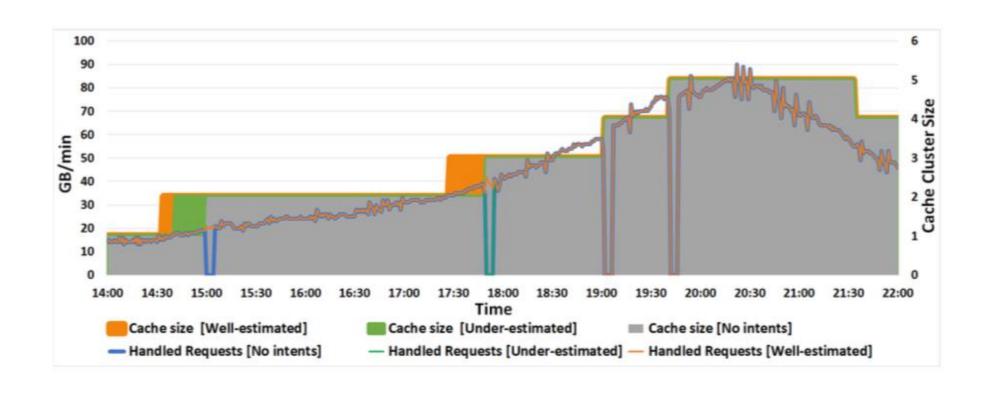
Tag	Basic Expression
<service></service>	Caching
<resources></resources>	contents to be cached
<conjunction></conjunction>	that can handle, that can meet, etc.
<TARGET $>$	<WORKLOAD $>$
<workload></workload>	<pre><number> <unit> or <adjective> <unit> or</unit></adjective></unit></number></pre>
	<pre><adjective> "workload"</adjective></pre>
<number></number>	numeric values that can represent the workload
<UNIT $>$	GB/min, requests/sec, etc.
<ADJECTIVE $>$	max, min, dynamic, high, medium, etc.
<conditions></conditions>	new caching request, max threshold exceeded,
<ACTIONS $>$	allocate cache servers(), scale out(),
<constraints></constraints>	with max storage, with least latency,
<priority></priority>	optional indicator of policy priority
<operator></operator>	Policy will be executed in parallel / sequential way

Descriptors

Cloud CDN (CCDN) Use Case

In our solution (opposed to Cloud CDNs today), Content Providers can express their high-level declarative intents targets (e.g., expected caching workload) which leads to better caching and resource management decisions with respect to the intent's target (well-, under-, and over-) estimation.

Content Provider (intent user)


```
{ "Resources-Allocation": {
        "Conditions": "New Caching Service Request",
        "Actions": "Allocate Cache Servers",
        "Constraints": "Average Number Of Servers"

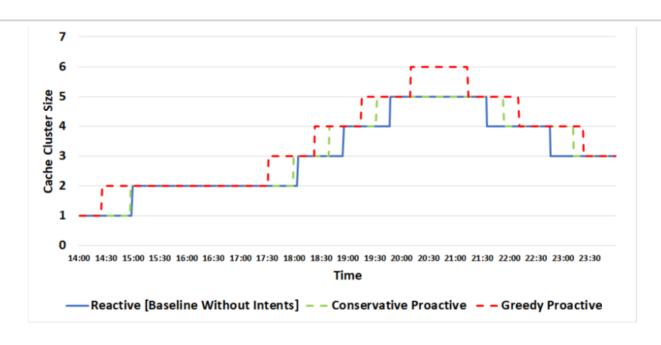
"Cache-Service-Resizing": {
        "Scale-up": {
            "Conditions": "Max Threshold Exceeded",
            "Actions": "Add more caches",
            "Constraints": "Number Of Caches to Add"

"Scale-down": {
            "Conditions": "Underutilized Threshold",
            "Actions": "Remove some Caches",
            "Constraints": "Time"
}
```

Cloud CDN (CCDN) Experimental Results

Cache cluster size and handled data rate in a reactive traditional CCDN (without intents) and an Intent-based one.

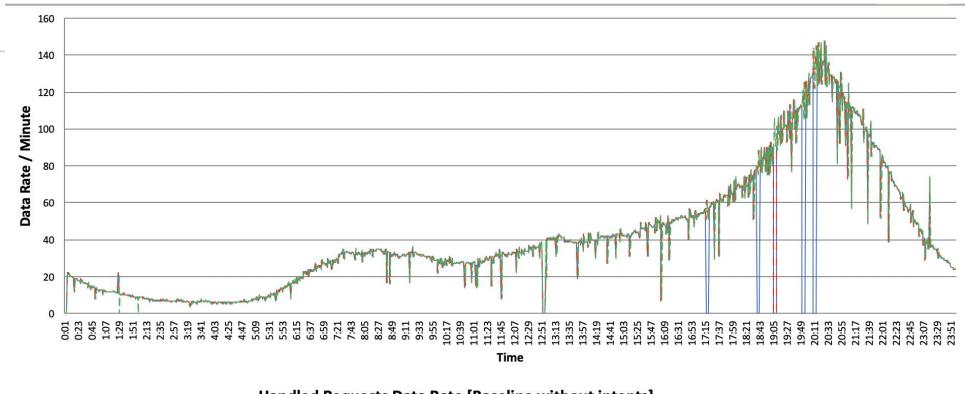
Intent Refinement



To maximize the handled workload, the intent system would refine intent policies based on the previous demands and cluster size analysis. A way to achieve this is to scale out/in **proactively**. Two approaches can be taken:

- conservative method aims to minimize the cost of deploying extra caches by sacrificing some unhandled requests;
- *greedy* method handles more requests at the expense of additional deployment cost.

Intent Refinement Results



Cache cluster resizing (Conservative vs. Greedy policy)

	Traditional (No intent)	Intent-Based, conservative	Intent-Based, Greedy	Oracle
Unhandled	3.17% ≃	$0.96\% \simeq$	$0\% \simeq 0 \text{ GB}$	$0\% \simeq 0 \text{ GB}$
Requests	967 GB	295 GB	070 <u> </u>	0% = 0 GB
Cost (minutes)	0	82	286	20

Intent Refinement Results

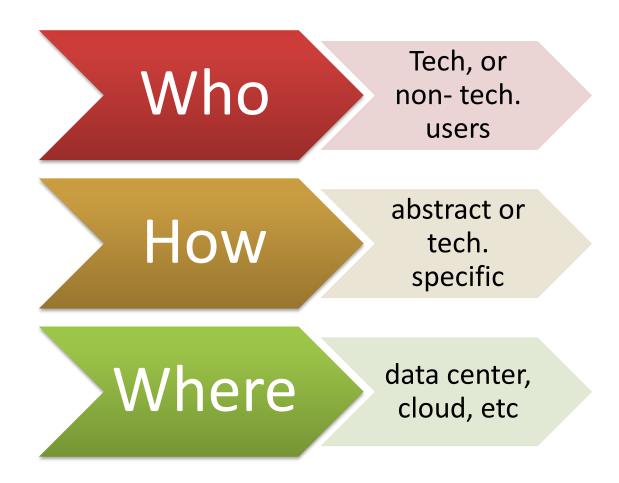
- Handled Requests Data Rate [Baseline without intents]
- -- Handled Requests Data Rate [Based on Optimistic Cluster Resizing]
- --- Handled Requests Data Rate [Based on Pessimistic Cluster Resizing]

Handled Requests (Conservative vs. Greedy policy)

Conclusions

- Discussed the limitations of the current Intent-based solutions
- Proposed Intent-Based NBI framework
- Proposed a Service Consumer Intent declarative expression along with its corresponding prescriptive policies
- Demonstrated a caching workload intent, and its corresponding policies and refinement in a CCDN use case

Future Work


- Extend intent-to-policy mapping to be dynamic based on several criteria and map them to existing Microservices.
- Investigate different intent targets.
- Implement the intent-based framework in a real cloud-based testbed along with the required APIs and translations.

Backup Slides

Different Intent Types

Meta-Analysis

TABLE I: Summary of the results of our meta-analysis of different intent-based solutions.

Intent-Based Solution	Intent Expression	Domain	Level
Boulder [8]	Subject, Predicate, Object: {Constraints, Conditions}	Networking	Presc.
ONOS Intent Framework [9]	Network Resource, Constraints, Criteria, Instructions	Networking	Presc.
(NEMO) by Huawei [10]	Object + Operation or	Networking	Presc.
	Object + Result (under test and not used yet)		Decl.
Group-based Policy (GBP) [11]	Endpoint group, contract {subject: {rules: {classifier and action set}}}	Networking / NFV	Presc.
(NIC) by HP [12]	Source Composite Endpoint, Destination Composite Endpoint, Traffic operation and constraints	Networking / NFV	Presc.
(DOVE) by IBM [13]	Not specified	Networking / NFV	_
Intent-based virtualisation Platform [14]	Resources, Conditions, Priority, and Instructions	Networking / NFV	Presc.
(INSpIRE) [15]	Traffic Type, Source, Destination, Context level, Contexts list	Networking / NFV	Presc.
Intent-based NBI service-oriented architecture [16]	application-specific language	Networking	_
(iNDIRA) [17]	Subject (Service or Condition), Relationship (has Arguments), Objects (multiple parameters)	Networking	Presc.
(SENSE) [18]	Service type, Service alias, Connections: {name,terminals, bandwidth: { qos_class, capacity, unit}}, schedule: {start, end, duration}	Networking / NFV	Presc.
Interactive Intent-based Negotiation Scheme [19]	Verbs, Nouns, Modifiers	Networking / NFV	Presc.
(MD-IDN) [20]	Action, Endpoint 1, Traffic type, Endpoint 2	Networking	Presc.
Janus system [21]	Endpoint-Group1, Connection attributes: {protocol, port, bandwidth, latency, middle-box}, Endpoint-Group 2	Networking	Presc.
Northbound Interface [22]	Predicate, Commodity, Target (resources), Constraint, Condition	Networking	Presc.
Adaptive Service Deployment [23]	Verb, Object, Modifiers, Subject	General use cases, e.g. storage, caching, IDS	Presc.

Cloud CDN Use Case: Caching Intent

When an intent developer wants to create a new intent, he has to decide how users can express their high-level targets using the Service-oriented declarative intent expression.

<SERVICE> <RESOURCES> <CONJUNCTION> <TARGET>

For example if < IAKGE I > is < WUKKLUAU >

The intent developer has to determine how this could be expressed by the CP either numerically such as "I want Caching for Content x to meet 10,000 requests/region"

or describe it with an adjective such as "I want Caching for Content x with the maximum requests/region".

Caching Intent Expression Descriptors

TABLE II. BASIC EXPRESSION OF CACHING SERVICE-ORIENTED INTENT **SERVICE> < RESOURCES> < CONJUNCTION>**

Tag	Basic Expression
<service></service>	Caching
<resources></resources>	contents to be cached
<conjunction></conjunction>	that can handle / that can meet / etc.

TABLE III. BASIC EXPRESSION SYNTAX OF CACHING SERVICE-ORIENTED INTENT < TARGET > AS < WORKLOAD >

Tag	Basic Expression
<workload></workload>	<number> <unit> or <adjective> <unit> or <adjective> "workload"</adjective></unit></adjective></unit></number>

TABLE IV. BASIC EXPRESSION < WORKLOAD>

Tag	Basic Expression
<number></number>	numeric values that can represent the workload
<unit></unit>	requests/region / requests/sec / etc.
<adjective></adjective>	max / min / dynamic / high / medium / etc.

Then, the intent developer determines how to decompose the *declarative intent* expressed by the CP to a set of *abstract policies*

If a new caching request is received
then allocate cache servers with maximum storage capacity
< sequential >

If new user request is received
then forward request to cache server with least latency

TABLE V. BASIC EXPRESSION OF **POLICY**> SYNTAX FØR **WORKLOAD**> TARGET

Tag	Basic Expression
<conditions></conditions>	new caching request /incoming user request /etc.
<actions></actions>	allocate cache servers() /forward request() /etc.
<constraints></constraints>	with max storage / with least latency / etc.
<operator></operator>	parallel / sequential

	Abstract Policies
Initial Intent's Policies	Policy 1: Condition: if a new caching request has been received Action: proactively allocate caches Constraints: number of caches that can handle the average requested load Operator: Sequential { Policy 2: Condition: if the caches' thresholds have been exceeded Action: scale out the cluster Constraints: number of caches to be started Operator: Parallel Policy 3: Condition: if the caches are underutilized Action: scale in the cluster Constraints: number of caches to be stopped
Refined Intent's Policies	Policy 1: Condition: if the current day is a weekday AND the caches' optimistic thresholds have been exceeded Action: scale out the cluster Constraints: at time Xi Operator: Parallel Policy 2: Condition: if the current day is a weekday AND the caches are underutilized Action: scale in the cluster Constraints: underutilization time > Xj } Operator: Parallel { Policy 3: Condition: if the current day is a weekend AND the caches' pessimistic thresholds have been exceeded Action: scale out the cluster Constraints: at time Xk Operator: Parallel Policy 4: Condition: if the current day is a weekend AND the caches are underutilized Action: scale in the cluster Constraints: underutilization time > Xm }

	Technical Policies
Initial Intent's Policies	Policy 1: Condition: if a new caching request has been received Action: allocate VMs as caches Constraints: 1 VM Operator: Sequential Policy 2: Condition: if the caches' CPU Utilization > 80% Action: scale out the cluster by spinning up VMs Constraints: 1 VM Operator: Parallel Policy 3: Condition: if the caches' CPU Utilization < 20% Action: scale in the cluster by stopping VMs Constraints: 1 VM
Refined Intent's Policies	{ Policy 1: Condition: if the current day is a weekday AND the caches' CPU Utilization > 75% have been exceeded Action: scale out the cluster Constraints: at 14:45 Operator: Parallel Policy 2: Condition: if the current day is a weekday AND the caches' CPU Utilization < 20% Action: scale in the cluster Constraints: underutilization time > 20 minutes } Operator: Parallel { Policy 3: Condition: if the current day is a weekend AND the caches' CPU Utilization > 70% have been exceeded Action: scale out the cluster Constraints: at 14:35 Operator: Parallel Policy 4: Condition: if the current day is a weekend AND the caches' CPU Utilization < 20% Action: scale in the cluster Constraints: underutilization time > 30 minutes

Thank You

Shiyam Alalmaei, Matthew Broadbent, Yehia Elkhatib, Mehdi Bezahaf, and Nicholas Race

School of Computing and Communications, Lancaster University, United Kingdom

Email: {s.alalmaei, m.broadbent, y.elkhatib, mehdi.bezahaf, n.race}@lancaster.ac.uk