Regarding ntpv5

Doug Arnold 2021-02-03

Ntpv4 works well for general IT

- Server, router logfile event timestamps
- Certificate, key, ticket lifetimes in security protocols
 - although start-up issue not solved
- Setting PC & laptop clocks
- Unicast client-server mode security is updated by NTS

Why ntpv5?

Some proposed answers from the email reflector:

- Greater accuracy
- Flexibility for a variety of use cases
- Mandatory security to push users to adopt security
- Uniform, monotonic timescale like TAI to avoid leap seconds
- Simplify ntp world by moving everyone to client-server mode

Current proposals

- Draft-gruessing-ntp-ntpv5-requirements-01
- Draft mlichvar-ntp-ntpv5-01
- Both of these are incomplete works in progress

	Gruessing requirements draft	Mlichvar draft
Improved accuracy		
Flexibility for variety of use cases		
Mandatory security		
Monotonic timescale		
Client server only		\checkmark

Improved Accuracy

- Non-fully-compliant versions of ntpv4 exist specifically to address this need
 - Different algorithms
 - Higher message rates
 - 50 ns clock agreement can be achieved in small networks
 - Popular in financial data centers
- Mlichvar draft includes ability for on-path support
 - Correction Extension Field would work similar to Transparent clocks in PTP

Flexibility for variety of use cases

- Why?
 - Needed to support high accuracy use cases in LANs
 - May be needed to support IoT use cases with devices that have limited processing power
 - Allow high reliability implementations, for example Chronos
- How
 - Separation of algorithms from over the wire protocol supported in both drafts
 - General purpose extension field mechanism in Mlichvar draft
- To make sure it solves the general IT case a document could be created with recommended algorithms

Mandatory Security

- Would encourage faster adoption of security
 - This approach has worked for other protocols
 - Likely to be viewed as positive in the long run
- Cons
 - Goes against flexibility for niche applications
 - Maybe some applications do not need security
 - Security needs for some applications might look very different from others. For example, time from the internet vs high accuracy LAN
 - Security is the fastest changing aspect of networking so keeping it separate might make it easier to keep standards up to date

Montonic Timescale

- Best choice would probably be TAI
- Pro: No leap seconds in the protocol
- Cons
 - Current software expects OS time to include leap seconds
 - Some legal requirements mandate UTC
 - Many technical standards mandate UTC
 - Some network operator with niche applications want to distribute uncommon timescales like UT1
- Both drafts propose allowing multiple timescale choices
 - Gruessing draft requires the ability to determine UTC
 - Mlichvar proposes enumerated variable in ntp messages indicating timescale in use

Unicast client-server only

• Pro

- Most deployed ntp devices use this
- Support for multiple modes makes implementations more complex
- No up-to-date security standards for other modes
- Con
 - Other modes are used in some networks
 - Might go against flexibility for niche applications