Steinwurf Latency for block and sliding window codes IETF 110 / NWCRG

Introduction

One of the key reasons for using ECC/FEC is to minimize latency.

ARQ Recovery latency: 1 RTT per retransmission

ECC/FEC Recovery latency: Distance to the repair packet

Block ECC/FEC

Block ECC/FEC

Distance to repair is minimized with small blocks...

Repair rate is the same 33%

5 Mbit/s stream 1280 byte packets: > 500 block size equals 1 s of latency

Comparison

Reed-Solomon (6,4) vs. (24, 16)

Small blocks are good for latency but bad for loss

Large blocks are good for loss but bad for latency

Sliding window codes

Minimizing distance to repair but offering better packet loss protection

Comparison

Using sliding window we get good loss recovery and latency properties!

Rely (6,4) vs. Reed-Solomon (24, 16)

Conclusions

- Consider sliding window codes when latency matters
- Sliding window codes worst case is block coding
- More about sliding window coding:
 - https://rely.steinwurf.com/docs/latest/
- Get in touch
 - Morten V. Pedersen (morten@steinwurf.com)
 - www.steinwurf.com

