
Steinwurf 
Latency for block and sliding window codes
IETF 110 / NWCRG



Introduction
One of the key reasons for using ECC/FEC is to minimize latency.

p1

p2

p3

p4

p4

x

p1

p2

p3

p4

p4

xƩp

p4

ARQ Recovery 
latency: 
1 RTT per 
retransmission

ECC/FEC Recovery 
latency: Distance to 
the repair packet



Block ECC/FEC

Source Source

Four blocks of 
4 symbols

One block of 
16 symbols

Case #1 Case #2

Case #1

Case #2

1 2 3 4 5 6 7

Timeline

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24



Block ECC/FEC

Case #1

Case #2

Timeline

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Distance to repair 
is minimized with 
small blocks...

5 Mbit/s stream 
1280 byte packets: 
 > 500 block size 
equals 1 s of 
latency

Repair rate is the 
same 33%



Comparison

Reed-Solomon (6,4) vs. (24, 16)

Small blocks are good for 
latency but bad for loss

Large blocks are good for 
loss but bad for latency



Sliding window codes

Minimizing distance to repair but offering better packet loss protection

s1

s3

s4

r1

r2

s7

s8

s9

s10

s11

s12

r3

r4

S
ym

bo
ls

 p
ro

du
ce

d 
by

 
en

co
di

ng

Source symbol index

r1

r2

s7
s8

s9
s10

s11
s12

r3

r4

Block #1 Block #2

S
ym

bo
ls

 p
ro

du
ce

d 
by

 
en

co
di

ng

Source symbol index

s1

s2

s3

s4

s5

s6

s2

s5

s6



Comparison

Rely (6,4) vs. Reed-Solomon (24, 16)

Using sliding window we 
get good loss recovery 
and latency properties!



Conclusions

● Consider sliding window codes when latency matters
● Sliding window codes worst case is block coding

● More about sliding window coding:
○ https://rely.steinwurf.com/docs/latest/

● Get in touch 
○ Morten V. Pedersen (morten@steinwurf.com)
○ www.steinwurf.com

 




