
|||Lara Bruseghini March 11, 2020 1

Key Extraction Attacks through Encrypted 
Private Key Corruption

Lara Bruseghini, Kenny Paterson, Daniel Huigens



|||Lara Bruseghini March 11. 2020

Threat model: 

▪ Attacker has write access to encrypted private long-term key of the victim 

▪ The victim uses the key as long as it decrypts successfully 

Insecure storage examples: key in transit, stored on the cloud, on USB drive.. 

  

2

Key corruption in insecure storage



|||Lara Bruseghini March 11. 2020

Attacker can corrupt encrypted private long-term key of the victim 

3

Key corruption in insecure storage

Klíma and Rosa (2001) show how to target DSA keys: 

1) attacker overwrites some public params 

2) waits for the victim to sign using the corrupted key 

3) extracts secret values from the faulty signature 



|||Lara Bruseghini March 11. 2020

Attacker can corrupt encrypted private long-term key of the victim 

4

Key corruption in insecure storage

Our findings — any key is potentially vulnerable to faulty signature attacks (& more): 

▪ direct attacks against DSA, EdDSA, RSA keys 

▪ indirect attacks against ECDSA/ECDH/EdDSA and ElGamal keys  
(can be converted into DSA ones)



|||Lara Bruseghini March 11. 2020

▪ Private values encrypted either with AEAD or CFB (always authenticated)  

▪ No integrity protection over public fields → decryption won’t fail 

▪ Key binding signatures can be forged/replaced by the attacker 

▪ However: 

▪ checking fingerprint reveals public key corruption 

▪ third-party certifications won’t be verifiable 

Our threat model: user/app might trust a key as long as it decrypts 

5

Existing protocol-level protections



|||Lara Bruseghini March 11. 2020

We have found that many libraries implement some key checks, but not 
always effective 

▪ Trial signature or decryption 

▪ Algorithm-specific checks  

  n ?= pq

de ?= 1 mod (p − 1)(q − 1)

6

Key validation in implementations



|||Lara Bruseghini March 11. 2020

ElGamal: full validation is infeasible 

DSA: difficult and expensive to validate 

EdDSA: expensive to validate 

In practice:  

▪ none of the libraries we have reviewed is fully safe against attacks 

▪ we found two real-world apps where this vulnerability was exploitable 

7

Key validation issues



|||Lara Bruseghini March 11. 2020

Our proposal: 

▪ for AEAD-encrypted keys, put public key in the Associated Data 

▪ for CFB-encrypted keys, hash the public key together with private one 

Advantages over implementation-level key validation: 

▪ works for any key algorithm 

▪ much faster 

▪ avoids all key validation pitfalls

8

Possible protocol-level solution


