
SOS (Simple Octet String)
[representing new ECC in OpenPGP]

NIIBE Yutaka
OpenPGP / IETF 110

2021-03-11

2/16

SOS is a variant for MPI
● OpenPGP defines a Multi-Precision Integer

format…
● …but ships some non-MPI things in that format

(ECC points in particular).
● SOS formalizes this and makes it easier to work

with, for new curves like curve448 in particular.

3/16

SOS Definition
An SOS consists of two pieces: a two-
octet scalar that is the length of the
SOS in bits followed by an opaque
string of octets

● Two interpretations:
– 8× length (in octets) of opaque octet string
– Length (in bits) of a big-endian number

● Backward-compatible with OpenPGP’s MPI

4/16

Classic ECC in OpenPGP with SOS
● Existing specification for classic ECC can just

replace the word "MPI" with "SOS".
● Cleaner definition than RFC 6637,

interoperable.

5/16

Classic ECC in OpenPGP with SOS
Before:
The point is encoded in the
Multiprecision Integer (MPI) format
[RFC4880]. The content of the MPI is the
following:
 B = 04 || x || y
where x and y are coordinates of the
point P = (x, y), each encoded in the
big-endian format and zero-padded to the
adjusted underlying field size. The
adjusted underlying field size is the
underlying field size that is rounded up
to the nearest 8-bit boundary.

After:

(When an OID is one of NIST Curves,)
See RFC 8422 (Section 5.4.1.
Uncompressed Point Format for NIST
Curves) for its semantics.

6/16

Modern ECC in OpenPGP with SOS
● For new modern curves, use SOS to

represent:
– Scalars
– EC points
– In native format of underlying algorithm

7/16

Already-deployed Modern ECC
● Ed25519 key and signature predates SOS
● Curve25519 key and encryption by ECDH

predates both SOS and X25519

We need special care for these algorithms.

8/16

Special care: EdDSA with Ed25519
● Keys use prefix 0x40 to represent EC point
● But no 0x40 prefix for EC point in Signature part of R
● Preceding zero-removal:

– Not an issue for keys, thanks to 0x40 prefix
– Still an issue for signature parts of R and S

● For interop, SOS-aware implementations must still handle
prefix and zero-removal for Ed25519 as a special case.

9/16

Special care: ECDH with Curve25519
● Keys use prefix 0x40 to represent an EC point.
● Secret key is scalar represented as big-endian MPI
● Formal spec X25519 has no prefix, uses little-endian

representation for secret scalar.
● For interop, SOS-aware implementations must still use prefix,

and secret scalar must be big-endian MPI for ECDH with
Curve25519 as a special case.

10/16

Why do zero-removal at all?
● Historical artifact? (ASN.1 BER and DER

both require it)
● SOS delegates that choice to the underlying

crypto algorithm, not the OpenPGP layer.

11/16

SOS Principle
● SOS uses OpenPGP to convey data of

underlying crypto algorithm.
● Underlying algorithm defines the data

format natively.

12/16

Alternatives 1/3: “easiest”
● Mimic what we did for Ed25519 (prefix 0x40 for key, not for

signature, and zero-removal/zero-recovery)
● Mimic Curve25519 (prefix 0x40 for key, big-endian secret scalar)

Pros
● Easier for existing

implementations

Cons
● More code complexity for

new curves
● Translation required for

crypto libraries

13/16

Alternatives 2/3: “per-curve”
● Define a specific data format for each curve

Pros
● Simple to dispatch to crypto

library
● Easier for new implementations

Cons
● Impossible to know how to

skip over unknown curve data

14/16

Alternatives 3/3: “JOS”
● Define simpler opaque Octet String (length

in octets, not bits): “Just an Octet String”

Pros
● Simpler, if we were writing

OpenPGP from scratch

Cons
● Would require new pubkey

algorithm numbers for
EdDSA-JOS and ECDH-JOS

15/16

My conclusion
● SOS is a compromise to introduce other modern

curves of ECC without diverging from standard
implementations.

● Looks a bit strange, but backward-compatibility is
good.

● Recommend adoption by the WG.

16/16

Questions?

