Service Assurance for Intent-based Networking Architecture & YANG Modules for Service Assurance

draft-claise-opsawg-service-assurance-architecture-04
B. Claise (Huawei), J. Quilbeuf (Independent), D. Lopez (Telefonica), D. Voyer (Bell Canada), T. Arumugam (Cisco)

draft-claise-opsawg-service-assurance-yang-06
B. Claise (Huawei), J. Quilbeuf (Independent), P. Lucente (NTT), P. Fasano (Telecom Italia Mobile), T. Arumugan (Cisco)

IETF 110, OPSAWG
Status

• Presented a few times already
• Last presentation at IETF 108
• Drafts were simply « refreshed » this time, almost no updates
• Presentation goals:
 – Quick refresh
 – Evaluate the interest to work on it as WG document
 – Introduce the opensource effort (Liège University)
Issues & Proposal

• Issues:
 – When a service degrades, where is the fault? What are the symptoms? What is the root cause?
 – When a network component fails, which services are impacted?

• Service Assurance for Intent-based Networking Architecture proposal:
 – Decompose the problem into smaller components (=subservices)
 – The assurance graph links those subservices to map the service « intent »
 – The subservices are assured independently
 – Infer a service health score

• This complements the end-to-end (synthetic) monitoring
Flexible Architecture

Could be a single box

Agent could be in or off routers
Open Architecture with YANG Models
Assurance Graph PoC

List of impacted services:
- sain-tunnel CocaCola
- l2vpn-p2p HSBC
- sain-tunnel-ipv6 RedBull

Symptoms/Root causes:
- Output traffic on interface GigabitEthernet0/0/0/0 in ECMP bundle with(GigabitEthernet0/0/0/1) is not fairly balanced
- Output traffic on interface GigabitEthernet0/0/1 in ECMP bundle with(GigabitEthernet0/0/0/0) is not fairly balanced
Open and Flexible Architecture

• Open architecture for multi-vendor support
 – How? With a YANG module:
 • Can augment the YANG module
 • Even for vendor-specific subservices

• Open architecture for multi-domains (wireline, wireless, 5G, VIM, etc.)
 – How? By linking domain-specific assurance graph
Feedback

• Valid problem to solve industry-wide?
• At the IETF?
• Going in the right direction?

• If yes, you might consider it as WG adoption.
Diagnostic Agent

Korian Edeline, Justin Iurman, Thomas Carlisi, Benoit Donnet
Objectives

• Main goal?
 – evaluate the SAIN architecture

• How?
 – opensource tools
 – test our implementation w.r.t. use cases
 • basic VPP health
 • VPP in VM monitoring
Global Architecture

- Service
 - Configuration
 - Orchestrator

- Network
 - Service
 - Instance
 - Configuration

- SAIN
 - Orchestrator

- SAIN
 - Collector

- Health Status
 - (Score + Symptoms)
 - Streamed
 - via Telemetry

- Metric Collection

- Monitored Entities

- VPP

- DxAgent

- gRPC
DxAgent

• An Open-Source SAIN Agent

```
metrics.csv
```

```
input.csv
```

```
rules.csv
```

Input
- XPCOM
- /proc
- IOAM
- netlink

Metrics
- e.g., rx_bytes, Net/Rate/Rx, /if/rx_bytes ⇒ rx_bytes

Rules
- e.g., "Receive errors peak", 1min(Δ(rx_error)) > 100

Shared Memory
- dxtop

gNMI exporter
- dxweb
DxTop

- Console app displaying data collected by DxAgent
DxWeb
• Web interface displaying dependency graph, health metrics, and symptoms from DxAgent
Rules

- Highlighting symptoms
 - subservice expertise for anomaly-highlighting rules
 - variables (metrics), basic operators and more
 (temporality, selection, has_changed, ...)

```plaintext
"Interface Flapping", /node/bm/net/if, Red, 1min(dynamicity(changes_count))>=6
"Low Buffer Availability", /node/kb/mem, Orange, (buffer_free/buffer_total)<0.1
"DPDK Buffer Alloc Errors", /node/kb/net/if, Orange, dynamicity(dpdk_alloc_errors)>0
"Sensor reached critical temperature", /node/bm/sensors/sensor, Red, input_temp>=critical_temp
"Non-standard Ethernet MTU", /node/bm/net/if, Red, (mtu!=1500) and (type="ether")
```
Use Case

• Monitor a VPP-in-VM instance
On-going Work

• IOAM agent for traffic telemetry
 – queue depth
 – buffer occupancy
• Cross-Layer Telemetry (CLT)
 – IOAM + OpenTelemetry
• Python wrapper for OWAMP C implementation
• Advanced application observation and service assurance
 1. a customer expresses a specific SLO between herself and an app running at the edge
 2. DxAgent+IOAM+CLT in charge of discovering the most appropriate app instance and the most appropriate path
 3. DxAgent+IOAM+CLT connects the customer to the selected app instance, through the selected path
 4. DxAgent+IOAM+CLT observes whether the app instance/path is still the most appropriate
Conclusion

• Working prototype
 – still lots of work to do (see previous slides)

• See
 – our work on telemetry
 • https://people.montefiore.uliege.be/bdonnet/telemetry/
 – DxAgent implementation
 • https://github.com/ekorian/dxagent
 – IOAM Agent implementation
 • https://github.com/IurmanJ/ioam-agent
 – CLT
 • https://github.com/IurmanJ/cross-layer-telemetry
Backup Slides
module: ietf-service-assurance

 +--ro assurance-graph-version? yang:counter32
 +--ro assurance-graph-last-change? yang:date-and-time
 +--rw subservices
 +--rw subservice* [type id]
 +--rw type identityref
 +--rw id string
 +--ro last-change? yang:date-and-time
 +--ro label? string
 +--ro under-maintenance? boolean
 +--rw maintenance-contact string
 +--rw (parameter)?
 | +--:(service-instance-parameter)
 | +--rw service-instance-parameter
 | +--rw service? string
 | +--rw instance-name? string
 +--ro health-score? uint8
 +--rw symptoms
 | +--ro symptom* [start-date-time id]
 | +--ro id string
 | +--ro health-score-weight? uint8
 | +--ro label? string
 | +--ro start-date-time yang:date-and-time
 | +--ro stop-date-time? yang:date-and-time
 +--rw dependencies
 +--rw dependency* [type id]
 +--rw type -> /subservices/subservice/type
 +--rw id -> /subservices/subservice[type=current()]/../type/id
 +--rw dependency-type? identityref
Assurance Tree API

module: ietf-service-assurance

+-rw subservices
 +-rw subservice* [type id]
 +-rw type identityref
 +-rw id string

...

+-rw dependencies
 +-rw dependency* [type id]
 +-rw type -> /subservices/subservice/type
 +-rw id -> /subservices/subservice[type=current()]/../type]/id
 +-rw dependency-type? identityref
Health Score and Symptoms API

module: ietf-service-assurance

 +--ro assurance-graph-version? yang:counter32
 +--ro assurance-graph-last-change? yang:date-and-time
 +--rw subservices
 +--rw subservice* [type id]

 +--ro health-score? uint8
 +--rw symptoms
 | +--ro symptom* [start-date-time id]
 | +--ro id string
 | +--ro health-score-weight? uint8
 | +--ro label? string
 | +--ro start-date-time yang:date-and-time
 | +--ro stop-date-time? yang:date-and-time

Health score and Symptoms per subservice
Subservice Parameters API

module: ietf-service-assurance

+-ro assurance-graph-version? yang:counter32
+-ro assurance-graph-last-change? yang:date-and-time
+-rw subservices
 +--rw subservice* [type id]
 +--rw type identityref
 +--rw id string
 +--ro last-change? yang:date-and-time
 +--ro label? string
 +--rw under-maintenance? boolean
 +--rw maintenance-contact string
 +--rw (parameter)?
 | +--:(service-instance-parameter)
 | +--rw service-instance-parameter
 | +--rw service? string
 | +--rw instance-name? string

NEW
New Subservices, with different Sets of Parameters

+--rw (parameter)?
 | +--:(service-instance-parameter)
 | | +--rw service-instance-parameter
 | | +--rw service? string
 | | +--rw instance-name? string
 | +--:(service-assurance-device:device-idty)
 | | +--rw service-assurance-device:device-idty
 | | +--rw service-assurance-device:device? string
 | +--:(service-assurance-interface:device)
 | | +--rw service-assurance-interface:device
 | | +--rw service-assurance-interface:device? string
 | +--:(service-assurance-interface:interface)
 | | +--rw service-assurance-interface:interface
 | | +--rw service-assurance-interface:interface? string
 | +--:(example-service-assurance-device-acme:acme-device-idty)
 | | +--rw example-service-assurance-device-acme:acme-device-idty
 | | +--rw example-service-assurance-device-acme:device? string
 | | +--rw example-service-assurance-device-acme:acme-specific-parameter? string

New subservice type
New vendor-specific subservice type