

Motivation

- Wireless is being integrated into industrial environments
 - Easier onboarding of massive number of IoT devices
 - Low cost/less human intervention
 - More flexibility adaptable production lines
- Most recent developments of Wireless Fidelity (Wi-Fi) allow the support of novel services
 - Wi-Fi 5/6/6E promising in indoor scenarios (e.g., better transmission for nLoS)
 - Higher data rates
 - Better traffic isolation (Resource Units, OFDMA)
- Industrial Services require deterministic guarantees
 - Time-sensitive networking (TSN) in wired infrastructures provide bounded latency, zero packet loss, low jitter, to time-triggered traffic
 - The wireless region must meet at least such requirements

Draft Structure

- Wireless Industrial Services Today
 - Sources: IEEE 802.11 Nendica, IEEE 802.11 RTA TIG, IETF DetNet RFC 8578, Avnu Alliance, 5G ACIA
 5G for Connected Industries and Automation White Paper, NICT report on wireless use-cases and
 communication requirements in factories, IEB113 report on TSN and rail metro networks, IETF RAW
 use-cases, ITU-R report on technical characteristics and operational goals of Wireless Avionics Intracommunications (WAIC)
 - Collection of 31 services, grouped into 13 different categories with objective communication KPIs (latency, packet loss, jitter, payload size, etc.)
- Debate on novel industrial wireless services
 - AR/VR Services within flexible factories
 - Decentralized shop-floor communication services
 - Autonomous airbone services
 - Debate on 3 examples of future industrial services; recommendations for wireless integration and specific communication KPIs

Requirements for Reliable Wireless Industrial Services Wireless Industrial Services Today

Use-case	IEEE Nendica	IEEE 802.11 RTA	IETF DetNet	Avnu	5G ACIA	NICT	IEB113	IETF RAW	IIC	ITU-T WAIC
Equipment and processes control	Х	Х	Х	Χ	Χ	Х		Х	Χ	
Quality supervision	Х					X			Χ	
Factory resource management	X	X				X			Χ	
Display	Х					X				
Human Safety	Х					Χ			X	
Industrial systems	X	X				X			Χ	
Mobile Robots	Χ	Χ		X	Χ	X			Χ	
Drove/UAV control		X						X	Χ	
Power Grid control			X							
Communication based train networks							X			
Mining Industry			X							
Connected Cabin				×						Χ
Wireless Avionics Intra- communication										X

4 07.03.2021

Collected Information

- Reasons for wireless integration
- Considerations for communication requirements
- Latency
- Periodicity stands for whether or not the data transmission is executed in a periodic fashion
- Cycle, if available
- Transmit data size (data payload) in bytes
- Tolerance to packet loss
- Time synchronisation needs (e.g., requirement for IEEE 1588 synchronisation)
- Node density/number of nodes supported

Requirements for Reliable Wireless Industrial Services Examples Today, Equipment and Process Control Services

- Reasons for wireless integration: flexibility of deployment; reconfigurability; mobility; maintenance cost reduction.
- Control of machines and robots services
 - Bounded latency: less than 10 ms.
 - Periodic
 - Transmit data size (bytes): 10-400 (small packets)
 - Tolerance to packet loss: 0.
 - Time synchronisation: IEEE 1588
 - Node density: 1 to 20 (per 20 m x 20 m)

PLC to PLC communication

Bounded latency: 100 us to 50 ms.

■ Transmit data size: 100-700

Tolerance to packet loss: 0

■ Time sync: IEEE 1588

Additional Services Example: Decentralized Shop-floor

- Requirements considerations
- A wider variety of traffic profiles MUST be supported, thus increasing the management complexity.
- Devices communicating via ad-hoc mode MUST integrate a collaborative communication approach, e.g., relaying, cluster-based scheduling approach.
- Low mobility MUST be supported.
- Multi-AP coordination MUST still be integrated
- Frequent handover MUST be supported (ideally with a make-before-break approach)
- Neighbour detection and coverage problem detection MUT be implemented for ad-hoc support as well.

Specific KPIs

- Latency: 20-40 ms
- Transmit data size (bytes): 50, VBR

Summary and Next Steps

- The need for deterministic and reliable wireless integration in industrial environments is increasing and becoming urgent
 - Extensive collection of available applications (31), categorized into 13 groups, with specific KPIs (latency, packet loss, periodicity, etc)
 - Increase/improve the collected number of KPIs
 - Extend the document with additional/future envisioned wireless services, and respective KPIs (considerations for a reliable infrastructure and also objective KPIs)
- Call for WG adoption
 - The IETF RAW charter has a milestone for the adoption of a requirements document
 - Collaborate with the draft on use-cases? A single document or 2 documents
 - The current draft being proposed is focused on requirements for industrial wireless services (and not for use-cases)