Requirements for Reliable Wireless Industrial Services
draft-sofia-raw-industrialreq

Presenter: Rute C. Sofia
Authors: Rute C. Sofia, Matthias Kovatsch, Paulo Mendes

RAW – IETF 110
March 8th 2021 (Meetecho)
Requirements for Reliable Wireless Industrial Services

Motivation

- Wireless is being integrated into industrial environments
 - Easier onboarding of massive number of IoT devices
 - Low cost/less human intervention
 - More flexibility – adaptable production lines

- Most recent developments of Wireless Fidelity (Wi-Fi) allow the support of novel services
 - Wi-Fi 5/6/6E – promising in indoor scenarios (e.g., better transmission for nLoS)
 - Higher data rates
 - Better traffic isolation (Resource Units, OFDMA)

- Industrial Services require deterministic guarantees
 - Time-sensitive networking (TSN) in wired infrastructures provide bounded latency, zero packet loss, low jitter, to time-triggered traffic
 - The wireless region must meet at least such requirements
Requirements for Reliable Wireless Industrial Services

Draft Structure

- Wireless Industrial Services Today
 - Sources: IEEE 802.11 Nendica, IEEE 802.11 RTA TIG, IETF DetNet RFC 8578, Avnu Alliance, 5G ACIA 5G for Connected Industries and Automation White Paper, NICT report on wireless use-cases and communication requirements in factories, IEB113 report on TSN and rail metro networks, IETF RAW use-cases, ITU-R report on technical characteristics and operational goals of *Wireless Avionics Intra-communications (WAIC)*
 - Collection of 31 services, grouped into 13 different categories with objective communication KPIs (latency, packet loss, jitter, payload size, etc.)

- Debate on novel industrial wireless services
 - AR/VR Services within flexible factories
 - Decentralized shop-floor communication services
 - Autonomous airbone services
 - Debate on 3 examples of future industrial services; recommendations for wireless integration and specific communication KPIs
Requirements for Reliable Wireless Industrial Services

Wireless Industrial Services Today

<table>
<thead>
<tr>
<th>Use-case</th>
<th>IEEE Nendica</th>
<th>IEEE 802.11 RTA</th>
<th>IETF DetNet</th>
<th>Avnu</th>
<th>5G ACIA</th>
<th>NICT</th>
<th>IEB113</th>
<th>IETF RAW</th>
<th>IIC</th>
<th>ITU-T WAIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment and processes control</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality supervision</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factory resource management</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Safety</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial systems</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobile Robots</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drove/UAV control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Grid control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication based train networks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mining Industry</td>
<td></td>
</tr>
<tr>
<td>Connected Cabin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wireless Avionics Intra-communication</td>
<td></td>
</tr>
</tbody>
</table>
Requirements for Reliable Wireless Industrial Services

Collected Information

- Reasons for wireless integration
- Considerations for communication requirements
- Latency
- Periodicity - stands for whether or not the data transmission is executed in a periodic fashion
- Cycle, if available
- Transmit data size (data payload) in bytes
- Tolerance to packet loss
- Time synchronisation needs (e.g., requirement for IEEE 1588 synchronisation)
- Node density/number of nodes supported
Requirements for Reliable Wireless Industrial Services
Examples Today, Equipment and Process Control Services

- Reasons for wireless integration: flexibility of deployment; reconfigurability; mobility; maintenance cost reduction.
- Control of machines and robots services
 - Bounded latency: less than 10 ms.
 - Periodic
 - Transmit data size (bytes): 10-400 (small packets)
 - Tolerance to packet loss: 0.
 - Time synchronisation: IEEE 1588
 - Node density: 1 to 20 (per 20 m x 20 m)

- PLC to PLC communication
 - Bounded latency: 100 us to 50 ms.
 - Transmit data size: 100-700
 - Tolerance to packet loss: 0
 - Time sync: IEEE 1588
Requirements for Reliable Wireless Industrial Services

Additional Services Example: Decentralized Shop-floor

- **Requirements considerations**
 - A wider variety of traffic profiles MUST be supported, thus increasing the management complexity.
 - Devices communicating via ad-hoc mode MUST integrate a collaborative communication approach, e.g., relaying, cluster-based scheduling approach.
 - Low mobility MUST be supported.
 - Multi-AP coordination MUST still be integrated.
 - Frequent handover MUST be supported (ideally with a make-before-break approach).
 - Neighbour detection and coverage problem detection MUT be implemented for ad-hoc support as well.

- **Specific KPIs**
 - Latency: 20-40 ms
 - Transmit data size (bytes): 50, VBR
Requirements for Reliable Wireless Industrial Services

Summary and Next Steps

- The need for deterministic and reliable wireless integration in industrial environments is increasing and becoming urgent
 - Extensive collection of available applications (31), categorized into 13 groups, with specific KPIs (latency, packet loss, periodicity, etc)
 - Increase/improve the collected number of KPIs
 - Extend the document with additional/future envisioned wireless services, and respective KPIs (considerations for a reliable infrastructure and also objective KPIs)

- Call for WG adoption
 - The IETF RAW charter has a milestone for the adoption of a requirements document
 - Collaborate with the draft on use-cases? A single document or 2 documents
 - The current draft being proposed is focused on requirements for industrial wireless services (and not for use-cases)