
Oblivious HTTP
draft-thomson-http-oblivious

SECDISPATCH, IETF 110, notPrague
*Martin Thomson, Chris Wood

https://unicorn-wg.github.io/oblivious-http/draft-thomson-http-oblivious.html


What?

A system and method for making unlinkable HTTP requests
Comprising

A proxy to hide source addressing and mix requests for traffic analysis resistance
An additional layer of encryption to hide information from the proxy



How?

Server publishes its HPKE configuration; a fresh HPKE context is used for every exchange

Client Proxy Server

Encapsulate request
Encapsulated request Encapsulated request

Decapsulate request

Encapsulate response
Encapsulated response Encapsulated response

Process request and respond

Decapsulate response



Why?

Clients might not want a server to link requests
Examples

DNS queries to a resolver (see oblivious DNS)
Telemetry queries

Less overhead than alternatives
A regular HTTP proxy with a connection per request has a lot of overhead
Tor has much stronger requirements, and much higher overheads
Prio is great for counting sensitive data, but adds delays and requires more infrastructure



Why not?

Not reasons not to standardize, just reasons not to use this always
It is no good for general purpose HTTP (no state can carry between requests)
It is more expensive than a direct request
It isn’t good enough where there is less trust (use something better suited)



Compared to one request per connection

Oblivious HTTP trades proxy replay protection, PCS security, and protocol changes for performance
A TLS connection for each request involves

1 ECDH keygen, 1 ECDH multiplication, 1 ECDSA signing or verification, lots of hashing
2 round trips (minimum) and lots of extra bytes

Oblivious HTTP involves
1 ECDH keygen (client only), 1 ECDH multiplication, a little less hashing
1 round trip and extra bytes (minimum 55, 32 for requests, responses plus HTTP wrapping)



Conditions

The proxy has limited trust from both client and server:
The client trusts the proxy not to leak their identity to the server
The server trusts the proxy not to overload it

Clients and servers might need to pad to resist traffic analysis
Servers need to protect against replay attacks from the proxy
Server compromise allows reading of messages if the proxy colludes



HTTP message format

This could work with message/http
That is very difficult to implement correctly
Lots of security vulnerabilities there

draft-thomson-http-binary-message is a simplified binary encoding based on HTTP/3
No header compression
Only flexibility is to allow streaming processing



Where?

Specification is small and largely self-contained
Interoperable implementations in Go and Rust (with test client and server)

https://github.com/chris-wood/ohttp-go
https://github.com/martinthomson/ohttp

Is there interest in doing the work?
Where should this be done?

Suggest a short-lived working group (protocol only; defer discovery mechanisms)

https://github.com/chris-wood/ohttp-go
https://github.com/martinthomson/ohttp

