Building blocks for Slicing in SR Network

Zafar Ali, Cisco Systems (zali@cisco.com) - Presenter
Clarence Filsfils, Cisco Systems (cfilsfil@cisco.com)
Pablo Camarillo, Cisco Systems (pcamaril@cisco.com)
Francois Clad, Cisco Systems (fclad@cisco.com)
Daniel Voyer, Bell Canada (daniel.voyer@bell.ca)
Satoru Matsushima, Softbank, (satoru.matsushima@g.softbank.co.jp)
Scope of the Draft

• Informational Draft
• Lists essential building blocks needed for network slicing
• How these building blocks needs to work together seamlessly

• Goals
 – Scaling
 – Incremental deployments
History of the Draft

• History
 – Rev 0 was published in July 2018
 – Rev 2 was presented at IETF106
History of the Draft (Cont’ed)

• Contents Presented at IETF106
 – SR Policy - with or without Flexible Algorithm
 – Flexible Algorithm
 – TI-LFA with O(50 msec) protection
 – SR VPN
 – SR Service Programming (NFV, SFC)
 – OAM and Performance Management (PM)
 – QoS
 – Orchestration at the Controller

• Diffs
 – Stateless Slice ID (SLID) references
 – SLID works seamlessly with the rest of the slicing building blocks
SLID Attributes

• SLID enables the differentiate treatment
 – QoS/DiffServ policy on a per SLID
• SLID construct is like QoS
 – Independent of Routing and Topology
• Stateless
• Backward compatible
 – Incremental deployments
SLID Independence from Routing and Topology Example

- **Flex-Algo and TI-LFA**
 - The backup path is optimized per Flex-Algo

- **Flex-Algo, TI-LFA and SLID**
 - SLID does not create a new instance of Flex-Algo
 > Scalable
 - TI-LFA works seamlessly for each SLID
 > The SLID is stateless
 > Backup paths provide differentiated treatment
Seamless Building Blocks

• SLID work seamlessly with other building blocks for scaling
 – Flex Algo
 > Like in previous slide
 • Orange & red Flex Algo and Green & Blue SLID works seamlessly
 – VPN
 – SR Policy (with or without flex algo)
 – QoS/ DiffServ policy, etc.

• SLID is a differentiated behavior at a node
 – Not too many SLIDs are needed
 > Scaling
SLID for SRv6

• Reference
 – draft-filsfils-spring-srv6-stateless-slice-id

• Ingress PE
 – Encapsulates an outer IPv6 header and optional SRH
 – MAY classify the traffic to a slice and sets the following in the outer IPv6 header
 > SPI bit (SLID Presence Indicator) in the TC
 > SLID in the 8 MSB of the Flow Label

• Per Slice Differential Treatment
 – The SLID is used to apply per-slice policies

• Backward Compatible
 – Node not supporting SLID provides slicing using non-SLID building blocks (default SLID)
SLID for MPLS

• Reference
 – draft-decreaen-mpls-slid-encoded-entropy-label-id

• Similar to draft-filsfils-spring-srv6-stateless-slice-id for MPLS networks

• Ingress PE
 – MAY classify the traffic to a slice and sets the following in the entropy label of MPLS label stack:
 > SLID in the x MSB of the entropy label
 > SPI bit (SLID Presence Indicator) in the one bit of TTL field (ELC)

• Per Slice Differential Treatment
 – The SLID is used to apply per-slice policies

• Backward Compatible
 – Node not supporting SLID provides slicing using non-SLID building blocks (default SLID)
Next Steps

• The authors would like the WG provide comments
• The authors would like the WG to adopt the document