

Segment Routing for Redundancy Protection

draft-geng-spring-sr-redundancy-protection-02 draft-geng-6man-redundancy-protection-srh-00

Presenter: Fan Yang

Xuesong Geng (gengxuesong@huawei.com)

Mach Chen (<u>mach.chen@huawei.com</u>)

Fan Yang (shirley.yangfan@huawei.com)

What is Redundancy Protection?

- Service Protection comes from Deterministic Networking (DetNet)
- New requirement for providing strict E2E reliability SLA guarantee to services, e.g. cloud VR, cloud game, HDV applications
- Definition
 - is one of the mechanisms to achieve service protection
 - follows the principle of PREOF (Packet Replication/ Elimination/Ordering Function)
- Example scenario:

Segment to support Redundancy Protection

- Redundancy Segment:
 - to perform the packet replication function on Redundancy Node
 - associated with a Redundancy policy (a variant of SR Policy) to steer the flow
 - in case of SRv6, new behavior End.R is defined
- Merging Segment:
 - to perform the packet elimination and ordering (optional) function on Merging Node
 - in case of SRv6, new behavior End.M is defined
- Flow ID and sequence number:
 - Flow Identification: to identify a unique flow
 - Sequence Number: to identify the packet sequence within one flow
- Redundancy Policy:
 - includes more than one ordered lists of segments between Redundancy Node and Merging Node
 - all the ordered lists of segments are used at the same time

Updates since IETF 109

- 1) Update Redundancy Segment with BSID-like behavior
- 2) Specify process of determining packet redundancy at Merging Segment
- 3) Redesign the process
- 4) Flow identification/sequence number encapsulation in another draft of 6man
- 5) Split the segment description in SR-MPLS and SRv6
- 6) Add structure description of redundancy policy in section 6

Redundancy Segment

- Updated as a variant of BSID
- Decouple replication behavior and marking of flow identification and sequence number
 - Packet replication is done by redundancy segment
 - Two deployments options to assign Flow ID:
 - 1. FI is unique in global domain, assigned to headend via SR-policy
 - 2. FI is unique between R and M nodes, assigned to R node via redundancy policy
 - Sequence number is added according to the configuration based on 5-tuple/color/sr-policy
 - Two deployment options to add seq num:
 - 1. SN is added at headend
 - 2. SN is added at R node

- S01. When an SRH is processed {
- S02. If (Segments Left>0) {
- S03. Decrement IPv6 Hop Limit by 1
- S04. Decrement Segments Left by 1
- S05. Update IPv6 DA with Segment List[Segments Left]
- S06. Create two new IPv6 headers with SRH-1 and SRH-2 respectively
- S07. Insert different policy-instructed segment lists into SRH-1 and SRH-2 Add Flow Identification and Sequence Number to SRH-1 and SRH-2 Remove the incoming outer IPv6+SRH header
- S08. Create a duplication of the incoming packet
- S09. Encapsulate the original packet with the new IPv6+SRH-1 header
- S10. Encapsulate the duplicate packet with the new IPv6+SRH-2 header
- S11. Set IPv6 SA as the local address of this node
- S12. Set IPv6 DA of IPv6+SRH-1 to the first segment of SRH-1 SL
- S13. Set IPv6 DA of IPv6+SRH-2 to the first segment of SRH-2 SL
- S14. Add flow identification and sequence number to SRH-1
- S15. Add flow identification and sequence number to SRH-2
- S16. Set the outer Payload Length, Traffic Class, Flow Label, Hop Limit and Next-Header fields
- S17. Submit the packet to the egress IPv6 FIB lookup and transmit
- S18. }
- S19. ELSE {
- S20. Drop the packet
- S21. }
- S22. }

Merging Segment

- Specify the determination of packet redundancy is based on sequence number
- Changes on the process of decap and encap of IPv6 header

(501	When an SRH is processed {
		If (Segments Lefts()) & "the nacket is not a redundant nacket" {
	502.	If (Segments Left==0) {
	503.	Acquire the sequence number of received packet and lookup it in a local table
9	504.	If (the sequence number is not existed in table) {
	S05.	Store the packet and record the sequence number in table
	506.	Remove the outer IPv6+SRH header
	507.	Decrement IPv6 Hop Limit by 1 in inner SRH
	508.	Decrement Segments Left by 1 in inner SRH
	509.	Update IPv6 DA with Segment List[Segments Left] in inner SRH
	S10.	Submit the packet to the egress IPv6 FIB lookup and transmit
	S11.	}
	512.	ELSE {
	S13.	Drop the packet
	514.	}
9	S15.	}
9	516.	}

Redundancy Protection Process

Redundancy Protection Process

Flow ID and Sequence Number Encapsulation

SRH Encapsulation in *draft-geng-6man-redundancy-protection-srh-00* A TLV is defined to carry flow ID and sequence number

- Flow Identification: 32 bits, to identify a unique flow
- Sequence Number: 32 bits, to identify the packet sequence within one flow

Redundancy Policy

- Redundancy Policy is a variant of SR policy
- is identified through the tuple <redundancy node, redundancy ID, merging node>
 - ✓ Redundancy node is specified as IPv4/IPv6 address of redundancy node
 - ✓ Merging node is specified as IPv4/IPv6 address of merging node
 - ✓ Redundancy ID could be a specified value of "color", which indicates the SR policy as a redundancy policy
 - ✓ Redundancy ID could also be used to distinguish different redundancy policies sharing the same redundancy node and merging node
- includes more than one ordered lists of segments between redundancy node and merging node
- all the ordered lists of segments are used at the same time

Next Step

- Refine the overall solution and SRH encapsulation
- Specify the redundancy policy in another draft
- Comments and discussions in mailing list
- Seek for collaborations
 - Segment specification in SR-MPLS data plane
 - Scalability discussion of flow ID and sequence number

Thanks

