SUIT Manifest

draft-ietf-suit-manifest-12
Brendan Moran, Hannes Tschofenig, Henk Birkholz, Koen Zandberg
March 11th, 2021, notinprague
Changes from v11

• Examples contained two errors:
 • Manifest digest was present in COSE objects
 • One digest
Delete component (Request from TEEP)

• Delete can be problematic as an imperative:
 • If permissions are wrong, could break dependencies
 • Who actually has authority to delete a TC?
 • Might not really mean “delete”:
 • what if two TAs depend on the same component and one deletes it?
 • Might already have been deleted
 • May break atomic nature of updates
 • Especially if used & deleted in same manifest

• Maybe Unlink or Garbage-Collect would be a better idiom
Garbage-Collect Component

• Marks a component as unused by the current manifest tree
• Manifest Processor applies marks the component
 • E.g. decrement a reference count
• Once the current section is complete, manifest processor checks for marked components that can be deleted.
Encryption in SUIT
Firmware Encryption

AES 128 Key Wrap (KW)
- AES KW described in RFC 3394
- Symmetric Key Encryption Key (KEK) is used to encrypt a randomly generated Content Encryption Key (CEK).

ECDH Ephemeral-Static + AES KW
- Sender creates an ephemeral ECDH key pair (E-Pub/E-Priv).
- Sender uses the receiver’s static public key (S-Pub) with the private key (E-Priv) to derive a symmetric key (ECDH-Shared)
- Sender applies HKDF on ECDH-Shared to produce KEK
- Sender generates a random CEK
- Sender encrypts the CEK with KEK.
AES 128 KW in COSE
// COSE ENCRYPT

[
 h'A10101',
 {
 5: h'26682306D4FB28CA01B43B80'
 },
 null,
 [
 h'',
 {
 1: -3,
 4: h'6B69642D31'
 },
 h'2AD7307BCB5EBDDD...4669D4DF13F46945'
]
]
Notes on AES 128 KW

• Additional Data Structure needs clarifications:

   ```
   Enc_structure = [
       context : "Encrypt",
       protected : empty_or_serialized_map,
       external_aad : bstr
   ]
   ```

• Protected refers to outer protected field – not inner.
• Suggestion: external_aad = null
ECDH Ephemeral-Static + AES KW in COSE
```json
96{

  h'A10101',
  {
    5: h'26682306D4FB28CA01B43B80'
  },
  null,

  [h'F55A50CF110908DA6443149F2C2062011A7D8333A72721A',
   [h'A1013818',
    {
      -1: h'A4010220012158205F...9795168718766510C445',
      4: h'6E69642D31'
    },
    null
   ]
  ]
}

// COSE ENCRYPT

// protected field with alg=AES-GCM-128

// unprotected field with...

// iv

// detached ciphertext

// recipients array

// empty protected field

// unprotected field with ...

// alg=AES-128-KW

// CEK encrypted with KEK

// recipients array

// protected field with alg=ECDH-ES + HKDF-256

// unprotected field with ...

// ephemeral structure

// kid

// empty ciphertext
```
Ephemeral

• The ephemeral structure contains the public ECDHE key + meta-data:

```
{
    1: 2, // key type (kty) parameter -> EC2
    -1: 1, // curve identifier (crv) parameter -> P-256
    -2: h'5FA28AA979D51E570E621C69F3C57C76608B21EECF2696629E65A0B4772A1174', // x
    -3: h'60F29EA947048EF6CA06F6DBEDF185CA559B181DE9EB6D80E68718766510C445' // y
}
```
The “Context”

PartyInfo = {
 identity : bstr / nil,
 nonce : bstr / int / nil,
 other : bstr / nil
}

COSE_KDF_Context = [
 AlgorithmID : int / tstr,
 PartyUInfo : [PartyInfo],
 PartyVInfo : [PartyInfo],
 SuppPubInfo : [
 keyDataLength : uint,
 protected : empty_or_serialized_map,
 ? other : bstr
],
 ? SuppPrivInfo : bstr
]

KEK = HKDF(ECDH-Shared, context)
encryptedCEK = KeyWrap(KEK, CEK)

• PartyUInfo.Identity => ?
• PartyVInfo.Identity => kid
• Nonce => Always nil
• SuppPubInfo
 • Protected, AlgorithmID and keyDataLength => algorithm used to encrypt the CEK (?)
• No other (?)
• SuppPrivInfo => null
General Recommendations

• Only use Encrypt structure
• Specify a small set of mechanisms in detail for interoperability and to limit code size. More key exchange techniques can be added later.
• Use only detached mode for ciphertext.

• Q: Does the same description also apply to encryption of the manifest?
Next Steps

• Create a PR to add examples and text.
• Need someone to verify the content.
• Describe example(s) for multiple recipients.
• Mcuboot uses (some) Elliptic Curve Integrated Encryption Scheme (ECIES)
 • Planning to specify hybrid public key encryption based on draft-irtf-cfrg-hpke.
 • Looks less complicated than the currently specified COSE public key encryption techniques.
 • Probably a better story long-term.