SUIT Manifest

draft-ietf-suit-manifest-12
Brendan Moran, Hannes Tschofenig, Henk Birkholz, Koen Zandberg
March 11t 2021, notinprague

Changes from v11l

* Examples contained two errors:
* Manifest digest was present in COSE objects
* One digest

Delete component (Request from TEEP)

* Delete can be problematic as an imperative:
* If permissions are wrong, could break dependencies
Who actually has authority to delete a TC?

Might not really mean “delete”:
* what if two TAs depend on the same component and one deletes it?
Might already have been deleted

May break atomic nature of updates
e Especially if used & deleted in same manifest

* Maybe Unlink or Garbage-Collect would be a better idiom

Garbage-Collect Component

* Marks a component as unused by the current manifest tree

* Manifest Processor applies marks the component
* E.g. decrement a reference count

* Once the current section is complete, manifest processor checks for
marked components that can be deleted.

Encryption in SUIT

Firmware Encryption

AES 128 Key Wrap (KW)
 AES KW described in RFC 3394

* Symmetric Key Encryption Key
(KEK) is used to encrypt a randomly
generated Content Encryption Key
(CEK).

ECDH Ephemeral-Static + AES KW

e Sender creates an ephemeral ECDH
key pair (E-Pub/E-Priv).

* Sender uses the receiver’s static
public key (S-Pub) with the private key
(E-Priv) to derive a symmetric key
(ECDH-Shared)

* Sender applies HKDF on ECDH-Shared
to produce KEK

* Sender generates a random CEK
* Sender encrypts the CEK with KEK.

AES 128 KW Iin COSE

96 (// COSE ENCRYPT

h'Aal10101"', // protected field with alg=AES-GCM-128
{ // unprotected field with...
5: h'26682306D4FB28CA01B43B80"' // iv
},
null, // detached ciphertext
[// recipients array
h'', // empty protected field
{ // unprotected field with...
1: -3, // alg=AES-128-KW
4: h'6B69642D31"' // kid

},
h'2AD7307BCB5EBDDD...4669D4DF13F46945' // CEK encrypted with KEK

Notes on AES 128 KW

 Additional Data Structure needs clarifications:

Enc_structure = |
context : "Encrypt",
protected : empty_or_serialized_map,
external_aad : bstr

]

* Protected refers to outer protected field — not inner.
e Suggestion: external _aad = null

ECDH Ephemeral-Static + AES KW in COSE

96 (// COSE ENCRYPT

h'alo0101l’', // protected field with alg=AES-GCM-128
{ // unprotected field with...
5: h'26682306D4FB28CA01B43B80"' // iv
},
null,

// detached ciphertext

// recipients array

h'', // empty protected field

{ // unprotected field with ...
1: -3 // alg=AES-128-KW

},

h'FA55A50CF110908DA6443149F2C2062011A7D8333A72721A", // CEK encrypted with KEK

[

// recipients array

h'A1013818', // protected field with alg=ECDH-ES + HKDF-256

{ // unprotected field with ...
-1: h'A4010220012158205F...979D5168718766510C445" , // ephemeral structure
4: h'6B69642D31"' // kid

},

null

// empty ciphertext

Ephemeral

* The ephemeral structure contains the public ECDHE key + meta-data:

1: 2,
-1: 1,

// key type (kty) parameter —> EC2
// curve identifier (crv) parameter —> P-256
-2: h'5FA28AA979D51E570E621C69F3C57C76608B21EECF2696629E65A0B4772A1174", // x

-3: h'60F29EA947048EFECAO6F6DBEDF185CA559B181DESEB6D80E68718766510C445' /[y
}

The “Context”

PartyInfo = (

identity : bstr / nil,

nonce : bstr / int / nil,

other : bstr / nil

COSE_KDF_Context = [
AlgorithmID : int / tstr,
PartyUInfo : [PartyInfo
PartyVInfo : [PartyInfo
SuppPubInfo : [

keyDataLength : uint,

protected : empty or serialized map,

? other : bstr

1,

? SuppPrivInfo : bstr

KEK = HKDF(ECDH-Shared, context)

encryptedCEK = KeyWrap(KEK, CEK)

PartyUInfo.Identity =>7
PartyVInfo.Identity =>kid
Nonce => Always nil

SuppPubInfo

* Protected,AlgorithmID and

keyDataLength => algorithm used to
encrypt the CEK (?)

No other (7?)
SuppPrivInfo => null

General Recommendations

* Only use Encrypt structure

 Specify a small set of mechanisms in detail for interoperability and to
limit code size. More key exchange techniques can be added later.

e Use only detached mode for ciphertext.

* Q: Does the same description also apply to encryption of the
manifest?

Next Steps

* Create a PR to add examples and text.
* Need someone to verify the content.
* Describe example(s) for multiple recipients.

* Mcuboot uses (some) Elliptic Curve Integrated Encryption Scheme
(ECIES)
* Planning to specify hybrid public key encryption based on draft-irtf-cfrg-hpke.

* Looks less complicated than the currently specified COSE public key
encryption techniques.

* Probably a better story long-term.

