IETF Network Slice NBI YANG
draft-wd-teas-ietf-network-slice-nbi-yang-02

TEAS WG
Mar 2021

Bo Wu, Dhruv Dhody, Reza Rokui (presenting), Liuyan Han
IETF Network Slice NBI YANG Key components

- This update aims to keep this draft consistent with the IETF Network Slice definition draft.
- Modelling consideration: support IETF Network Slice configuration and monitoring

![Diagram showing the relationship between different components, including Consumer higher level operation system, IETF Network Slice Controller (NSC), and Network Controllers.]

From IETF NS definition WG draft

Legend:
NSE: IETF Network Slice Endpoint
0: Represents IETF Network Slice Endpoints

Figure 2: An IETF Network Slice Example

Modelling

YANG components

- Network-slice-topology: any-to-any, hub-spoke ...
- Network-slice-slo-policy
- Network-slice-endpoint
- Network-slice-member

A connection between a pair of Network-slice-endpoint (NSE)
Major updates

• Replace multiple SLO sets per NS into one SLO set - remove modelling concept “connection-group”
• Add CE-facing or PE-facing mapping text to NSE modeling concepts
• Add JSON examples to clarify the usage of the YANG model, NS templates and NS SLO usage
Network Slice SLO Modelling

• An “IETF Network Slice” supports one global SLO policy set for a slice.
 • Support the Minimal set in draft-ietf-teas-ietf-network-slice-definition defines: Guaranteed Minimum Bandwidth, Guaranteed Maximum Latency, etc.
 • Be flexible to extend other SLO attributes in future

• When a customer has a service requirement with more than one SLO policy sets, it could create multiple slices using separate API calls, one for each slice with a specific SLO policy set.

Network Slices examples

Network Slice A: Blue SLO set: bandwidth 10M, latency 100ms
Network Slice B: Red SLO set: bandwidth 100M, latency 50ms
Network Slice Endpoint Modelling

- Modelling Consideration
 - An NSE should be uniquely identified.
 - An NSE is an abstract entity with attributes that can map to a network node, e.g. CE or PE.
 - An NSE can only belong to one single Network Slice.
 - Will be aligned to the final definition with WG consensus, the current definition allows for flexibility!
Open issue: Integrate Service Function Chains (SFC) as part of Network Slice

• A slice may require the invocation of service functions (firewall, for example) in a given order

• The relationship with NSE is not clear and draft-ietf-teas-ietf-network-slice-definition and draft-nsdt-teas-ns-framework does not give much detailed description on SF
Next Step

• Solicit comments and reviews from WG
• Solicit WG adoption
Backup
module: ietf-network-slice
 +--rw ietf-network-slices
 +--rw ns-templates
 | +--rw slo-template* [id]
 | +--rw id string
 | +--rw template-description? string
 +--rw ietf-network-slice* [ns-id]
 | +--rw ns-id string
 | +--rw ns-description? string
 | +--rw ns-tag* string
 | +--rw ns-topology? identityref
 +--rw (ns-slo-policy)?
 | +--:(standard)
 | | +--rw slo-template? leafref
 | +--:(custom)
 | +--rw slo-policy
 | +--rw policy-description? string
 | +--rw ns-metric-bounds
 | | +--rw ns-metric-bound* [metric-type]
 | | +--rw metric-type identityref
 | | +--rw metric-unit string
 | | +--rw value-description? string
 | | +--rw boundary? uint64
 +--rw status
 | +--rw admin-enabled? boolean
 | +--ro oper-status? operational-type
 +--rw ns-endpoint* [ep-id]
 | +--rw ep-id string
 | +--rw ep-description? string
 | +--rw ep-role? identityref
 | +--rw location
 | | +--rw altitude? int64
 | | +--rw latitude? decimal64
 | | +--rw longitude? decimal64
 | +--rw node-id? string
 | +--rw ep-ip? inet:host
 | +--rw ns-match-criteria
 | | +--rw ns-match-criteria* [match-type]
 | | +--rw match-type identityref
 | | +--rw value? string
 | +--rw (ns-slo-policy)?
 | | +--:(standard)
 | | | +--rw slo-template? leafref
 | | +--:(custom)
 | | +--rw slo-policy
 | | +--rw policy-description? string
 | | +--rw ns-metric-bounds
 | | | +--rw ns-metric-bound* [metric-type]
 | | | +--rw metric-type identityref
 | | | +--rw metric-unit string
 | | | +--rw value-description? string
 | | | +--rw boundary? uint64
 | | +--rw status
 | | | +--rw admin-enabled? boolean
 | | | +--ro oper-status? operational-type
 | | +--ro ep-monitoring
 | | | +--ro incoming-utilized-bandwidth? te-types:te-bandwidth
 | | | +--ro outgoing-utilized-bandwidth? te-types:te-bandwidth
 | | +--ro incoming-bw-utilization decimal64
 | | +--ro outgoing-bw-utilization decimal64
 +--rw ns-member* [ns-member-id]
 | +--rw ns-member-id uint32
 | +--rw ns-member-description? string
 | +--rw src
 | | +--rw src-ep-id? leafref
 | +--rw dest
 | | +--rw dest-ep-id? leafref
 | +--rw monitoring-type? ns-monitoring-type
 | +--ro ns-member-monitoring
 | | +--ro latency? yang:gauge64
 | | +--ro jitter? yang:gauge32
 | | +--ro loss-ratio? decimal64