
Network Working Group J. Preuß Mattsson
Internet-Draft J. Fornehed
Intended status: Informational G. Selander
Expires: 8 August 2022 F. Palombini
 Ericsson
 C. Amsüss
 Energy Harvesting Solutions
 4 February 2022

 Attacks on the Constrained Application Protocol (CoAP)
 draft-mattsson-core-coap-attacks-03

Abstract

 Being able to securely read information from sensors, to securely
 control actuators, and to not enable distributed denial-of-service
 attacks are essential in a world of connected and networking things
 interacting with the physical world. This document summarizes a
 number of known attacks on CoAP and show that just using CoAP with a
 security protocol like DTLS, TLS, or OSCORE is not enough for secure
 operation. Several of the discussed attacks can be mitigated with
 the solutions in draft-ietf-core-echo-request-tag.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 8 August 2022.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Preuß Mattsson, et al. Expires 8 August 2022 [Page 1]

Internet-Draft Attacks on CoAP February 2022

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2
 2. Attacks on CoAP . 4
 2.1. The Block Attack . 4
 2.2. The Request Delay Attack 6
 2.3. The Response Delay and Mismatch Attack 9
 2.4. The Request Fragment Rearrangement Attack 12
 2.4.1. Completing an Operation with an Earlier Final
 Block . 13
 2.4.2. Injecting a Withheld First Block 14
 2.4.3. Attack difficulty 15
 2.5. The Relay Attack . 16
 3. Security Considerations 17
 4. IANA Considerations . 17
 5. Informative References 17
 Acknowledgements . 19
 Authors’ Addresses . 19

1. Introduction

 Being able to securely read information from sensors and to securely
 control actuators are essential in a world of connected and
 networking things interacting with the physical world. One protocol
 used to interact with sensors and actuators is the Constrained
 Application Protocol (CoAP) [RFC7252]. Any Internet-of-Things (IoT)
 deployment valuing security and privacy would use a security protocol
 such as DTLS [I-D.ietf-tls-dtls13], TLS [RFC8446], or OSCORE
 [RFC8613] to protect CoAP, where the choice of security protocol
 depends on the transport protocol and the presence of intermediaries.
 The use of CoAP over UDP and DTLS is specified in [RFC7252] and the
 use of CoAP over TCP and TLS is specified in [RFC8323]. OSCORE
 protects CoAP end-to-end with the use of COSE [RFC8152] and the CoAP
 Object-Security option [RFC8613], and can therefore be used over any
 transport.

Preuß Mattsson, et al. Expires 8 August 2022 [Page 2]

Internet-Draft Attacks on CoAP February 2022

 The Constrained Application Protocol (CoAP) [RFC7252] was designed
 with the assumption that security could be provided on a separate
 layer, in particular by using DTLS [RFC6347]. The four properties
 traditionally provided by security protocols are:

 * Data confidentiality

 * Data origin authentication

 * Data integrity checking

 * Replay protection

 In this document we show that protecting CoAP with a security
 protocol on another layer is not nearly enough to securely control
 actuators (and in many cases sensors) and that secure operation often
 demands far more than the four properties traditionally provided by
 security protocols. We describe several serious attacks any on-path
 attacker (i.e., not only "trusted intermediaries") can do and
 discusses tougher requirements and mechanisms to mitigate the
 attacks. In general, secure operation of actuators also requires the
 three properties:

 * Data-to-data binding

 * Data-to-space binding

 * Data-to-time binding

 "Data-to-data binding" is e.g., binding of responses to a request or
 binding of data fragments to each other. "Data-to-space binding" is
 the binding of data to an absolute or relative point in space (i.e.,
 a location) and may in the relative case be referred to as proximity.
 "Data-to-time binding" is the binding of data to an absolute or
 relative point in time and may in the relative case be referred to as
 freshness. The two last properties may be bundled together as "Data-
 to-spacetime binding".

 Freshness is a measure of when a message was sent on a timescale of
 the recipient. A client or server that receives a message can either
 verify that the message is fresh or determine that it cannot be
 verified that the message is fresh. What is considered fresh is
 application dependent. Freshness is completely different from replay
 protection, but most replay protection mechanism use a sequence
 number. Assuming the client is well-behaving, such a sequence number
 that can be used by the server as a relative measure of when a
 message was sent on a timescale of the sender. Replay protection is
 mandatory in TLS and OSCORE and optional in DTLS. DTLS and TLS use

Preuß Mattsson, et al. Expires 8 August 2022 [Page 3]

Internet-Draft Attacks on CoAP February 2022

 sequence numbers for both requests and responses. In TLS the
 sequence numbers are implicit and not sent in the record. OSCORE use
 sequence numbers for requests and some responses. Most OSCORE
 responses are bound to the request and therefore, enable the client
 to determine if the response is fresh or not.

 The request delay attack (valid for DTLS, TLS, and OSCORE and
 described in Section 2.2) lets an attacker control an actuator at a
 much later time than the client anticipated. The response delay and
 mismatch attack (valid for DTLS and TLS and described in Section 2.3)
 lets an attacker respond to a client with a response meant for an
 older request. The request fragment rearrangement attack (valid for
 DTLS, TLS, and OSCORE and described in Section 2.4) lets an attacker
 cause unauthorized operations to be performed on the server, and
 responses to unauthorized operations to be mistaken for responses to
 authorized operations.

 The goal with this document is motivating generic and protocol-
 specific recommendations on the usage of CoAP. Mechanisms mitigating
 some of the attacks discussed in this document can be found in
 [I-D.ietf-core-echo-request-tag]. This document is a companion
 document to [I-D.ietf-core-echo-request-tag] giving more information
 on the attacks motivating the mechanisms.

2. Attacks on CoAP

 Internet-of-Things (IoT) deployments valuing security and privacy,
 need to use a security protocol such as DTLS, TLS, or OSCORE to
 protect CoAP. This is especially true for deployments of actuators
 where attacks often (but not always) have serious consequences. The
 attacks described in this section are made under the assumption that
 CoAP is already protected with a security protocol such as DTLS, TLS,
 or OSCORE, as an attacker otherwise can easily forge false requests
 and responses.

2.1. The Block Attack

 An on-path attacker can block the delivery of any number of requests
 or responses. The attack can also be performed by an attacker
 jamming the lower layer radio protocol. This is true even if a
 security protocol like DTLS, TLS, or OSCORE is used. Encryption
 makes selective blocking of messages harder, but not impossible or
 even infeasible. With DTLS and TLS, proxies can read the complete
 CoAP message, and with OSCORE, the CoAP header and several CoAP
 options are not encrypted. In all three security protocols, the IP-
 addresses, ports, and CoAP message lengths are available to all on-
 path attackers, which may be enough to determine the server,
 resource, and command. The block attack is illustrated in Figures 1

Preuß Mattsson, et al. Expires 8 August 2022 [Page 4]

Internet-Draft Attacks on CoAP February 2022

 and 2.

 Client Foe Server
 | | |
 +----->X | Code: 0.03 (PUT)
 | PUT | | Token: 0x47
 | | | Uri-Path: lock
 | | | Payload: 1 (Lock)
 | | |

 Figure 1: Blocking a request

 Where ’X’ means the attacker is blocking delivery of the message.

 Client Foe Server
 | | |
 +------------>| Code: 0.03 (PUT)
 | | PUT | Token: 0x47
 | | | Uri-Path: lock
 | | | Payload: 1 (Lock)
 | | |
 | X<-----+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0x47
 | | |

 Figure 2: Blocking a response

 While blocking requests to, or responses from, a sensor is just a
 denial-of-service attack, blocking a request to, or a response from,
 an actuator results in the client losing information about the
 server’s status. If the actuator e.g., is a lock (door, car, etc.),
 the attack results in the client not knowing (except by using out-of-
 band information) whether the lock is unlocked or locked, just like
 the observer in the famous Schrödingers cat thought experiment. Due
 to the nature of the attack, the client cannot distinguish the attack
 from connectivity problems, offline servers, or unexpected behavior
 from middle boxes such as NATs and firewalls.

 Remedy: Any IoT deployment of actuators where synchronized state is
 important need to use confirmable messages and the client need to
 take appropriate actions when a response is not received and it
 therefore loses information about the server’s status.

Preuß Mattsson, et al. Expires 8 August 2022 [Page 5]

Internet-Draft Attacks on CoAP February 2022

2.2. The Request Delay Attack

 An on-path attacker may not only block packets, but can also delay
 the delivery of any packet (request or response) by a chosen amount
 of time. If CoAP is used over a reliable and ordered transport such
 as TCP with TLS or OSCORE (with TLS-like sequence number handling),
 no messages can be delivered before the delayed message. If CoAP is
 used over an unreliable and unordered transport such as UDP with DTLS
 or OSCORE, other messages can be delivered before the delayed message
 as long as the delayed packet is delivered inside the replay window.
 When CoAP is used over UDP, both DTLS and OSCORE allow out-of-order
 delivery and uses sequence numbers together with a replay window to
 protect against replay attacks against requests. The replay window
 has a default length of 64 in DTLS and 32 in OSCORE. The attacker
 can influence the replay window state by blocking and delaying
 packets. By first delaying a request, and then later, after
 delivery, blocking the response to the request, the client is not
 made aware of the delayed delivery except by the missing response.
 In general, the server has no way of knowing that the request was
 delayed and will therefore happily process the request. Note that
 delays can also happen for other reasons than a malicious attacker.

 If some wireless low-level protocol is used, the attack can also be
 performed by the attacker simultaneously recording what the client
 transmits while at the same time jamming the server. The request
 delay attack is illustrated in Figure 3.

 Client Foe Server
 | | |
 +----->@ | Code: 0.03 (PUT)
 | PUT | | Token: 0x9c
 | | | Uri-Path: lock
 | | | Payload: 0 (Unlock)
 | | |

 | | |
 | @----->| Code: 0.03 (PUT)
 | | PUT | Token: 0x9c
 | | | Uri-Path: lock
 | | | Payload: 0 (Unlock)
 | | |
 | X<-----+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0x9c
 | | |

 Figure 3: Delaying a request

Preuß Mattsson, et al. Expires 8 August 2022 [Page 6]

Internet-Draft Attacks on CoAP February 2022

 Where ’@’ means the attacker is storing and later forwarding the
 message (@ may alternatively be seen as a wormhole connecting two
 points in time).

 While an attacker delaying a request to a sensor is often not a
 security problem, an attacker delaying a request to an actuator
 performing an action is often a serious problem. A request to an
 actuator (for example a request to unlock a lock) is often only meant
 to be valid for a short time frame, and if the request does not reach
 the actuator during this short timeframe, the request should not be
 fulfilled. In the unlock example, if the client does not get any
 response and does not physically see the lock opening, the user is
 likely to walk away, calling the locksmith (or the IT-support).

 If a non-zero replay window is used (the default when CoAP is used
 over UDP), the attacker can let the client interact with the actuator
 before delivering the delayed request to the server (illustrated in
 Figure 4). In the lock example, the attacker may store the first
 "unlock" request for later use. The client will likely resend the
 request with the same token. If DTLS is used, the resent packet will
 have a different sequence number and the attacker can forward it. If
 OSCORE is used, resent packets will have the same sequence number and
 the attacker must block them all until the client sends a new message
 with a new sequence number (not shown in Figure 4). After a while
 when the client has locked the door again, the attacker can deliver
 the delayed "unlock" message to the door, a very serious attack.

Preuß Mattsson, et al. Expires 8 August 2022 [Page 7]

Internet-Draft Attacks on CoAP February 2022

 Client Foe Server
 | | |
 +----->@ | Code: 0.03 (PUT)
 | PUT | | Token: 0x9c
 | | | Uri-Path: lock
 | | | Payload: 0 (Unlock)
 | | |
 +------------>| Code: 0.03 (PUT)
 | PUT | | Token: 0x9c
 | | | Uri-Path: lock
 | | | Payload: 0 (Unlock)
 | | |
 <-------------+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0x9c
 | | |

 | | |
 +------------>| Code: 0.03 (PUT)
 | PUT | | Token: 0x7a
 | | | Uri-Path: lock
 | | | Payload: 1 (Lock)
 | | |
 <-------------+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0x7a
 | | |
 | @----->| Code: 0.03 (PUT)
 | | PUT | Token: 0x9c
 | | | Uri-Path: lock
 | | | Payload: 0 (Unlock)
 | | |
 | X<-----+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0x9c
 | | |

 Figure 4: Delaying request with reordering

 While the second attack (Figure 4) can be mitigated by using a replay
 window of length zero, the first attack (Figure 3) cannot. A
 solution must enable the server to verify that the request was
 received within a certain time frame after it was sent or enable the
 server to securely determine an absolute point in time when the
 request is to be executed. This can be accomplished with either a
 challenge-response pattern, by exchanging timestamps between client
 and server, or by only allowing requests a short period after client
 authentication.

Preuß Mattsson, et al. Expires 8 August 2022 [Page 8]

Internet-Draft Attacks on CoAP February 2022

 Requiring a fresh client authentication (such as a new TLS/DTLS
 handshake or an EDHOC key exchange [I-D.ietf-lake-edhoc]) mitigates
 the problem, but requires larger messages and more processing than a
 dedicated solution. Security solutions based on exchanging
 timestamps require exactly synchronized time between client and
 server, and this may be hard to control with complications such as
 time zones and daylight saving. Wall clock time is not monotonic,
 may reveal that the endpoints will accept expired certificates, or
 reveal the endpoint’s location. Use of non-monotonic clocks is
 problematic as the server will accept requests if the clock is moved
 backward and reject requests if the clock is moved forward. Even if
 the clocks are synchronized at one point in time, they may easily get
 out-of-sync and an attacker may even be able to affect the client or
 the server time in various ways such as setting up a fake NTP server,
 broadcasting false time signals to radio-controlled clocks, or
 exposing one of them to a strong gravity field. As soon as client
 falsely believes it is time synchronized with the server, delay
 attacks are possible. A challenge response mechanism where the
 server does not need to synchronize its time with the client is
 easier to analyze but require more roundtrips. The challenges,
 responses, and timestamps may be sent in a CoAP option or in the CoAP
 payload.

 Remedy: Any IoT deployment of actuators where freshness is important
 should use the mechanisms specified in
 [I-D.ietf-core-echo-request-tag] unless another application specific
 challenge-response or timestamp mechanism is used.

2.3. The Response Delay and Mismatch Attack

 The following attack can be performed if CoAP is protected by a
 security protocol where the response is not bound to the request in
 any way except by the CoAP token. This would include most general
 security protocols, such as DTLS, TLS, and IPsec, but not OSCORE.
 CoAP [RFC7252] uses a client generated token that the server echoes
 to match responses to request, but does not give any guidelines for
 the use of token with DTLS and TLS, except that the tokens currently
 "in use" SHOULD (not SHALL) be unique. In HTTPS, this type of
 binding is always assured by the ordered and reliable delivery, as
 well as mandating that the server sends responses in the same order
 that the requests were received.

 The attacker performs the attack by delaying delivery of a response
 until the client sends a request with the same token, the response
 will be accepted by the client as a valid response to the later
 request. If CoAP is used over a reliable and ordered transport such
 as TCP with TLS, no messages can be delivered before the delayed
 message. If CoAP is used over an unreliable and unordered transport

Preuß Mattsson, et al. Expires 8 August 2022 [Page 9]

Internet-Draft Attacks on CoAP February 2022

 such as UDP with DTLS, other messages can be delivered before the
 delayed message as long as the delayed packet is delivered inside the
 replay window. Note that mismatches can also happen for other
 reasons than a malicious attacker, e.g., delayed delivery or a server
 sending notifications to an uninterested client.

 The attack can be performed by an attacker on the wire, or an
 attacker simultaneously recording what the server transmits while at
 the same time jamming the client. As (D)TLS encrypts the Token, the
 attacker needs to predict when the Token is resused. How hard that
 is depends on the CoAP library, but some implementations are known to
 omit the Token as much as possible and others lets the application
 chose the Token. If the response is a "piggybacked response", the
 client may additionally check the Message ID and drop it on mismatch.
 That doesn’t make the attack impossible, but lowers the probability.

 The response delay and mismatch attack is illustrated in Figure 5.

 Client Foe Server
 | | |
 +------------>| Code: 0.03 (PUT)
 | PUT | | Token: 0x77
 | | | Uri-Path: lock
 | | | Payload: 0 (Unlock)
 | | |
 | @<-----+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0x77
 | | |

 | | |
 +----->X | Code: 0.03 (PUT)
 | PUT | | Token: 0x77
 | | | Uri-Path: lock
 | | | Payload: 0 (Lock)
 | | |
 <------@ | Code: 2.04 (Changed)
 | 2.04 | | Token: 0x77
 | | |

 Figure 5: Delaying and mismatching response to PUT

 If we once again take a lock as an example, the security consequences
 may be severe as the client receives a response message likely to be
 interpreted as confirmation of a locked door, while the received
 response message is in fact confirming an earlier unlock of the door.
 As the client is likely to leave the (believed to be locked) door
 unattended, the attacker may enter the home, enterprise, or car
 protected by the lock.

Preuß Mattsson, et al. Expires 8 August 2022 [Page 10]

Internet-Draft Attacks on CoAP February 2022

 The same attack may be performed on sensors. As illustrated in
 Figure 6, an attacker may convince the client that the lock is
 locked, when it in fact is not. The "Unlock" request may be also be
 sent by another client authorized to control the lock.

 Client Foe Server
 | | |
 +------------>| Code: 0.01 (GET)
 | GET | | Token: 0x77
 | | | Uri-Path: lock
 | | |
 | @<-----+ Code: 2.05 (Content)
 | | 2.05 | Token: 0x77
 | | | Payload: 1 (Locked)
 | | |
 +------------>| Code: 0.03 (PUT)
 | PUT | | Token: 0x34
 | | | Uri-Path: lock
 | | | Payload: 1 (Unlock)
 | | |
 | X<-----+ Code: 2.04 (Changed)
 | | 2.04 | Token: 0x34
 | | |
 +----->X | Code: 0.01 (GET)
 | GET | | Token: 0x77
 | | | Uri-Path: lock
 | | |
 <------@ | Code: 2.05 (Content)
 | 2.05 | | Token: 0x77
 | | | Payload: 1 (Locked)
 | | |

 Figure 6: Delaying and mismatching response to GET

 As illustrated in Figure 7, an attacker may even mix responses from
 different resources as long as the two resources share the same
 (D)TLS connection on some part of the path towards the client. This
 can happen if the resources are located behind a common gateway, or
 are served by the same CoAP proxy. An on-path attacker (not
 necessarily a (D)TLS endpoint such as a proxy) may e.g., deceive a
 client that the living room is on fire by responding with an earlier
 delayed response from the oven (temperatures in degree Celsius).

Preuß Mattsson, et al. Expires 8 August 2022 [Page 11]

Internet-Draft Attacks on CoAP February 2022

 Client Foe Server
 | | |
 +------------>| Code: 0.01 (GET)
 | GET | | Token: 0x77
 | | | Uri-Path: oven/temperature
 | | |
 | @<-----+ Code: 2.05 (Content)
 | | 2.05 | Token: 0x77
 | | | Payload: 225
 | | |

 | | |
 +----->X | Code: 0.01 (GET)
 | GET | | Token: 0x77
 | | | Uri-Path: livingroom/temperature
 | | |
 <------@ | Code: 2.05 (Content)
 | 2.05 | | Token: 0x77
 | | | Payload: 225
 | | |

 Figure 7: Delaying and mismatching response from other resource

 Remedy: Section 4.2 of [I-D.ietf-core-echo-request-tag] formally
 updates the client token processing for CoAP [RFC7252]. Following
 this updated processing mitigates the attack.

2.4. The Request Fragment Rearrangement Attack

 These attack scenarios show that the Request Delay and Block Attacks
 can be used against block-wise transfers to cause unauthorized
 operations to be performed on the server, and responses to
 unauthorized operations to be mistaken for responses to authorized
 operations. The combination of these attacks is described as a
 separate attack because it makes the Request Delay Attack relevant to
 systems that are otherwise not time-dependent, which means that they
 could disregard the Request Delay Attack.

 This attack works even if the individual request/response pairs are
 encrypted, authenticated and protected against the Response Delay and
 Mismatch Attack, provided the attacker is on the network path and can
 correctly guess which operations the respective packages belong to.

Preuß Mattsson, et al. Expires 8 August 2022 [Page 12]

Internet-Draft Attacks on CoAP February 2022

 The attacks can be performed on any security protocol where the
 attacker can delay the delivery of a message unnoticed. This
 incluses DTLS, IPsec, and most OSCORE configurations. The attacks
 does not work on TCP with TLS or OSCORE (with TLS-like sequence
 number handling) as in these cases no messages can be delivered
 before the delayed message.

2.4.1. Completing an Operation with an Earlier Final Block

 In this scenario (illustrated in Figure 8), blocks from two
 operations on a POST-accepting resource are combined to make the
 server execute an action that was not intended by the authorized
 client. This works only if the client attempts a second operation
 after the first operation failed (due to what the attacker made
 appear like a network outage) within the replay window. The client
 does not receive a confirmation on the second operation either, but,
 by the time the client acts on it, the server has already executed
 the unauthorized action.

 Client Foe Server
 | | |
 +-------------> POST "incarcerate" (Block1: 0, more to come)
 | | |
 <-------------+ 2.31 Continue (Block1: 0 received, send more)
 | | |
 +----->@ | POST "valjean" (Block1: 1, last block)
 | | |
 +----->X | All retransmissions dropped
 | | |

 (Client: Odd, but let’s go on and promote Javert)

 | | |
 +-------------> POST "promote" (Block1: 0, more to come)
 | | |
 | X<-----+ 2.31 Continue (Block1: 0 received, send more)
 | | |
 | @------> POST "valjean" (Block1: 1, last block)
 | | |
 | X<-----+ 2.04 Valjean Promoted
 | | |

 Figure 8: Completing an operation with an earlier final block

 Remedy: If a client starts new block-wise operations on a security
 context that has lost packets, it needs to label the fragments in
 such a way that the server will not mix them up.

Preuß Mattsson, et al. Expires 8 August 2022 [Page 13]

Internet-Draft Attacks on CoAP February 2022

 A mechanism to that effect is described as Request-Tag
 [I-D.ietf-core-echo-request-tag]. Had it been in place in the
 example and used for body integrity protection, the client would have
 set the Request-Tag option in the "promote" request. Depending on
 the server’s capabilities and setup, either of four outcomes could
 have occurred:

 1. The server could have processed the reinjected POST "valjean" as
 belonging to the original "incarcerate" block; that’s the
 expected case when the server can handle simultaneous block
 transfers.

 2. The server could respond 5.03 Service Unavailable, including a
 Max-Age option indicating how long it prefers not to take any
 requests that force it to overwrite the state kept for the
 "incarcerate" request.

 3. The server could decide to drop the state kept for the
 "incarcerate" request’s state, and process the "promote" request.
 The reinjected POST "valjean" will then fail with 4.08 Request
 Entity incomplete, indicating that the server does not have the
 start of the operation any more.

2.4.2. Injecting a Withheld First Block

 If the first block of a request is withheld by the attacker for later
 use, it can be used to have the server process a different request
 body than intended by the client. Unlike in the previous scenario,
 it will return a response based on that body to the client.

 Again, a first operation (that would go like "Girl stole apple. What
 shall we do with her?" - "Set her free.") is aborted by the proxy,
 and a part of that operation is later used in a different operation
 to prime the server for responding leniently to another operation
 that would originally have been "Evil Queen poisoned apple. What
 shall we do with her?" - "Lock her up.". The attack is illustrated
 in Figure 9.

Preuß Mattsson, et al. Expires 8 August 2022 [Page 14]

Internet-Draft Attacks on CoAP February 2022

 Client Foe Server
 | | |
 +----->@ | POST "Girl stole apple. Wh"
 | | | (Block1: 0, more to come)

 (Client: We’ll try that one later again; for now, we have something
 more urgent:)

 | | |
 +-------------> POST "Evil Queen poisened apple. Wh"
 | | | (Block1: 0, more to come)
 | | |
 | @<-----+ 2.31 Continue (Block1: 0 received, send more)
 | | |
 | @------> POST "Girl stole apple. Wh"
 | | | (Block1: 0, more to come)
 | | |
 | X<-----+ 2.31 Continue (Block1: 0 received, send more)
 | | |
 <------@ | 2.31 Continue (Block1: 0 received, send more)
 | | |
 +-------------> POST "at shall we do with her?"
 | | | (Block1: 1, last block)
 | | |
 <-------------+ 2.05 "Set her free."
 | | | (Block1: 1 received and this is the result)

 Figure 9: Injecting a withheld first block

 The remedy described in Section 2.4.1 works also for this case. Note
 that merely requiring that blocks of an operation should have
 incrementing sequence numbers would be insufficient to remedy this
 attack.

2.4.3. Attack difficulty

 The success of any fragment rearrangement attack has multiple
 prerequisites:

 * A client sends different block-wise requests that are only
 distinguished by their content.

 This is generally rare in typical CoRE applications, but can
 happen when the bodies of FETCH requests exceed the fragmentation
 threshold, or when SOAP patterns are emulated.

 * A client starts later block-wise operations after an earlier one
 has failed.

Preuß Mattsson, et al. Expires 8 August 2022 [Page 15]

Internet-Draft Attacks on CoAP February 2022

 This happens regularly as a consequence of operating in a low-
 power and lossy network: Losses can cause failed operation
 (especially when the network is unavailable for time exceeding the
 "few expected round-trips" they may be limited to per [RFC7959]),
 and the cost of reestablishing a security context.

 * The attacker needs to be able to determine which packets contain
 which fragments.

 This can be achieved by an on-path attacker by observing request
 timing, or simply by observing request sizes in the case when a
 body is split into precisely two blocks.

 It is _not_ a prerequisite that the resulting misassembled request
 body is syntactically correct: As the server erroneously expects the
 body to be integrity protected from an authorized source, it might be
 using a parser not suitable for untrusted input. Such a parser might
 crash the server in extreme cases, but might also produce a valid but
 incorrect response to the request the client associates the response
 with. Note that many constrained applications aim to minimize
 traffic and thus employ compact data formats; that compactness leaves
 little room for syntactically invalid messages.

 The attack is easier if the attacker has control over the request
 bodies (which would be the case when a trusted proxy validates the
 attacker’s authorization to perform two given requests, and an attack
 on the path between the proxy and the server recombines the blocks to
 a semantically different request). Attacks of that shape can easily
 result in reassembled bodies chosen by the attacker, but no services
 are currently known that operate in this way.

 Summarizing, it is unlikely that an attacker can perform any of the
 fragment rearrangement attacks on any given system - but given the
 diversity of applications built on CoAP, it is easily to imagine that
 single applications would be vulnerable. As block-wise transfer is a
 basic feature of CoAP and its details are sometimes hidden behind
 abstractions or proxies, application authors can not be expected to
 design their applications with these attacks in mind, and mitigation
 on the protocol level is prudent.

2.5. The Relay Attack

 Yet another type of attack can be performed in deployments where
 actuator actions are triggered automatically based on proximity and
 without any user interaction, e.g., a car (the client) constantly
 polling for the car key (the server) and unlocking both doors and
 engine as soon as the car key responds. An attacker (or pair of
 attackers) may simply relay the CoAP messages out-of-band, using for

Preuß Mattsson, et al. Expires 8 August 2022 [Page 16]

Internet-Draft Attacks on CoAP February 2022

 examples some other radio technology. By doing this, the actuator
 (i.e., the car) believes that the client is close by and performs
 actions based on that false assumption. The attack is illustrated in
 Figure 10. In this example the car is using an application specific
 challenge-response mechanism transferred as CoAP payloads.

 Client Foe Foe Server
 | | | |
 +----->| +----->| Code: 0.02 (POST)
 | POST | | POST | Token: 0x3a
 | | | | Uri-Path: lock
 | | | | Payload: JwePR2iCe8b0ux (Challenge)
 | | | |
 |<-----+ |<-----+ Code: 2.04 (Changed)
 | 2.04 | | 2.04 | Token: 0x3a
 | | | | Payload: RM8i13G8D5vfXK (Response)
 | | | |

 Figure 10: Relay attack (the client is the actuator)

 The consequences may be severe, and in the case of a car, lead to the
 attacker unlocking and driving away with the car, an attack that
 unfortunately is happening in practice.

 Remedy: Getting a response over a short-range radio cannot be taken
 as proof of proximity and can therefore not be used to take actions
 based on such proximity. Any automatically triggered mechanisms
 relying on proximity need to use other stronger mechanisms to
 establish proximity. Mechanisms that can be used are: measuring the
 round-trip time and calculating the maximum possible distance based
 on the speed of light, or using radio with an extremely short range
 like NFC (centimeters instead of meters). Another option is to
 include geographical coordinates (from e.g., GPS) in the messages and
 calculate proximity based on these, but in this case the location
 measurements need to be very precise and the system need to make sure
 that an attacker cannot influence the location estimation. Some
 types of global navigation satellite systems (GNSS) receivers are
 vulnerable to spoofing attacks.

3. Security Considerations

 The whole document can be seen as security considerations for CoAP.

4. IANA Considerations

 This document has no actions for IANA.

5. Informative References

Preuß Mattsson, et al. Expires 8 August 2022 [Page 17]

Internet-Draft Attacks on CoAP February 2022

 [I-D.ietf-core-echo-request-tag]
 Amsüss, C., Mattsson, J. P., and G. Selander, "CoAP: Echo,
 Request-Tag, and Token Processing", Work in Progress,
 Internet-Draft, draft-ietf-core-echo-request-tag-14, 4
 October 2021, <https://www.ietf.org/archive/id/draft-ietf-
 core-echo-request-tag-14.txt>.

 [I-D.ietf-lake-edhoc]
 Selander, G., Mattsson, J. P., and F. Palombini,
 "Ephemeral Diffie-Hellman Over COSE (EDHOC)", Work in
 Progress, Internet-Draft, draft-ietf-lake-edhoc-12, 20
 October 2021, <https://www.ietf.org/archive/id/draft-ietf-
 lake-edhoc-12.txt>.

 [I-D.ietf-tls-dtls13]
 Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", Work in Progress, Internet-Draft, draft-ietf-tls-
 dtls13-43, 30 April 2021,
 <https://www.ietf.org/archive/id/draft-ietf-tls-
 dtls13-43.txt>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016,
 <https://www.rfc-editor.org/info/rfc7959>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8323] Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,
 Silverajan, B., and B. Raymor, Ed., "CoAP (Constrained
 Application Protocol) over TCP, TLS, and WebSockets",
 RFC 8323, DOI 10.17487/RFC8323, February 2018,
 <https://www.rfc-editor.org/info/rfc8323>.

Preuß Mattsson, et al. Expires 8 August 2022 [Page 18]

Internet-Draft Attacks on CoAP February 2022

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8613] Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
 <https://www.rfc-editor.org/info/rfc8613>.

Acknowledgements

 The authors would like to thank Carsten Bormann, Klaus Hartke, Jaime
 Jiménez, Ari Keränen, Matthias Kovatsch, Achim Kraus, Sandeep Kumar,
 and András Méhes for their valuable comments and feedback.

Authors’ Addresses

 John Preuß Mattsson
 Ericsson AB
 SE-164 80 Stockholm
 Sweden

 Email: john.mattsson@ericsson.com

 John Fornehed
 Ericsson AB
 SE-164 80 Stockholm
 Sweden

 Email: john.fornehed@ericsson.com

 Göran Selander
 Ericsson AB
 SE-164 80 Stockholm
 Sweden

 Email: goran.selander@ericsson.com

 Francesca Palombini
 Ericsson AB
 SE-164 80 Stockholm
 Sweden

 Email: francesca.palombini@ericsson.com

Preuß Mattsson, et al. Expires 8 August 2022 [Page 19]

Internet-Draft Attacks on CoAP February 2022

 Christian Amsüss
 Energy Harvesting Solutions

 Email: c.amsuess@energyharvesting.at

Preuß Mattsson, et al. Expires 8 August 2022 [Page 20]

