
CoRE Working Group R. Höglund
Internet-Draft M. Tiloca
Updates: 8613 (if approved) RISE AB
Intended status: Standards Track 25 October 2021
Expires: 28 April 2022

 Key Update for OSCORE (KUDOS)
 draft-hoeglund-core-oscore-key-limits-02

Abstract

 Object Security for Constrained RESTful Environments (OSCORE) uses
 AEAD algorithms to ensure confidentiality and integrity of exchanged
 messages. Due to known issues allowing forgery attacks against AEAD
 algorithms, limits should be followed on the number of times a
 specific key is used for encryption or decryption. This document
 defines how two OSCORE peers must follow these limits and what steps
 they must take to preserve the security of their communications.
 Therefore, this document updates RFC8613. Furthermore, this document
 specifies Key Update for OSCORE (KUDOS), a lightweight procedure that
 two peers can use to update their keying material and establish a new
 OSCORE Security Context.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 28 April 2022.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Höglund & Tiloca Expires 28 April 2022 [Page 1]

Internet-Draft Key Update for OSCORE (KUDOS) October 2021

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Terminology . 3
 2. AEAD Key Usage Limits in OSCORE 3
 2.1. Problem Overview . 3
 2.1.1. Limits for ’q’ and ’v’ 4
 2.2. Additional Information in the Security Context 7
 2.2.1. Common Context 7
 2.2.2. Sender Context 7
 2.2.3. Recipient Context 8
 2.3. OSCORE Messages Processing 8
 2.3.1. Protecting a Request or a Response 8
 2.3.2. Verifying a Request or a Response 9
 3. Current methods for Rekeying OSCORE 9
 4. Key Update for OSCORE (KUDOS) 11
 4.1. Extensions to the OSCORE Option 12
 4.2. Function for Security Context Update 13
 4.3. Establishment of the New OSCORE Security Context 15
 4.3.1. Client-Initiated Key Update 16
 4.3.2. Server-Initiated Key Update 18
 4.4. Retention Policies 21
 4.5. Discussion . 21
 5. Security Considerations 21
 6. IANA Considerations . 22
 6.1. OSCORE Flag Bits Registry 22
 7. References . 22
 7.1. Normative References 22
 7.2. Informative References 23
 Acknowledgments . 24
 Authors’ Addresses . 24

1. Introduction

 Object Security for Constrained RESTful Environments (OSCORE)
 [RFC8613] provides end-to-end protection of CoAP [RFC7252] messages
 at the application-layer, ensuring message confidentiality and
 integrity, replay protection, as well as binding of response to
 request between a sender and a recipient.

Höglund & Tiloca Expires 28 April 2022 [Page 2]

Internet-Draft Key Update for OSCORE (KUDOS) October 2021

 In particular, OSCORE uses AEAD algorithms to provide confidentiality
 and integrity of messages exchanged between two peers. Due to known
 issues allowing forgery attacks against AEAD algorithms, limits
 should be followed on the number of times a specific key is used to
 perform encryption or decryption [I-D.irtf-cfrg-aead-limits].

 Should these limits be exceeded, an adversary may break the security
 properties of the AEAD algorithm, such as message confidentiality and
 integrity, e.g. by performing a message forgery attack. The original
 OSCORE specification [RFC8613] does not consider such limits.

 This document updates [RFC8613] as follows.

 * It defines when a peer must stop using an OSCORE Security Context
 shared with another peer, due to the reached key usage limits.
 When this happens, the two peers have to establish a new Security
 Context with new keying material, in order to continue their
 secure communication with OSCORE.

 * It specifies KUDOS, a lightweight key update procedure that the
 two peers can use in order to update their current keying material
 and establish a new OSCORE Security Context. This deprecates and
 replaces the procedure specified in Appendix B.2 of [RFC8613].

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Readers are expected to be familiar with the terms and concepts
 related to the CoAP [RFC7252] and OSCORE [RFC8613] protocols.

2. AEAD Key Usage Limits in OSCORE

 The following sections details how key usage limits for AEAD
 algorithms must be considered when using OSCORE. It covers specific
 limits for common AEAD algorithms used with OSCORE; necessary
 additions to the OSCORE Security Context, updates to the OSCORE
 message processing, and existing methods for rekeying OSCORE.

2.1. Problem Overview

 The OSCORE security protocol [RFC8613] uses AEAD algorithms to
 provide integrity and confidentiality of messages, as exchanged
 between two peers sharing an OSCORE Security Context.

Höglund & Tiloca Expires 28 April 2022 [Page 3]

Internet-Draft Key Update for OSCORE (KUDOS) October 2021

 When processing messages with OSCORE, each peer should follow
 specific limits as to the number of times it uses a specific key.
 This applies separately to the Sender Key used to encrypt outgoing
 messages, and to the Recipient Key used to decrypt and verify
 incoming protected messages.

 Exceeding these limits may allow an adversary to break the security
 properties of the AEAD algorithm, such as message confidentiality and
 integrity, e.g. by performing a message forgery attack.

 The following refers to the two parameters ’q’ and ’v’ introduced in
 [I-D.irtf-cfrg-aead-limits], to use when deploying an AEAD algorithm.

 * ’q’: this parameter has as value the number of messages protected
 with a specific key, i.e. the number of times the AEAD algorithm
 has been invoked to encrypt data with that key.

 * ’v’: this parameter has as value the number of alleged forgery
 attempts that have been made against a specific key, i.e. the
 amount of failed decryptions that has been done with the AEAD
 algorithm for that key.

 When a peer uses OSCORE:

 * The key used to protect outgoing messages is its Sender Key, in
 its Sender Context.

 * The key used to decrypt and verify incoming messages is its
 Recipient Key, in its Recipient Context.

 Both keys are derived as part of the establishment of the OSCORE
 Security Context, as defined in Section 3.2 of [RFC8613].

 As mentioned above, exceeding specific limits for the ’q’ or ’v’
 value can weaken the security properties of the AEAD algorithm used,
 thus compromising secure communication requirements.

 Therefore, in order to preserve the security of the used AEAD
 algorithm, OSCORE has to observe limits for the ’q’ and ’v’ values,
 throughout the lifetime of the used AEAD keys.

2.1.1. Limits for ’q’ and ’v’

 Formulas for calculating the security levels as Integrity Advantage
 (IA) and Confidentiality Advantage (CA) probabilities, are presented
 in [I-D.irtf-cfrg-aead-limits]. These formulas take as input
 specific values for ’q’ and ’v’ (see section Section 2.1) and for
 ’l’, i.e., the maximum length of each message (in cipher blocks).

Höglund & Tiloca Expires 28 April 2022 [Page 4]

Internet-Draft Key Update for OSCORE (KUDOS) October 2021

 For the algorithms that can be used as AEAD Algorithm for OSCORE
 shows in Figure 1, the key property to achieve is having IA and CA
 values which are no larger than p = 2^-64, which will ensure a safe
 security level for the AEAD Algorithm. This can be entailed by using
 the values q = 2^20, v = 2^20, and l = 2^10, that this document
 recommends to use for these algorithms.

 Figure 1 shows the resulting IA and CA probabilities enjoyed by the
 considered algorithms, when taking the value of ’q’, ’v’ and ’l’
 above as input to the formulas defined in
 [I-D.irtf-cfrg-aead-limits].

 +------------------------+----------------+----------------+
 | Algorithm name | IA probability | CA probability |
 |------------------------+----------------+----------------|
 | AEAD_AES_128_CCM | 2^-64 | 2^-66 |
 | AEAD_AES_128_GCM | 2^-97 | 2^-89 |
 | AEAD_AES_256_GCM | 2^-97 | 2^-89 |
 | AEAD_CHACHA20_POLY1305 | 2^-73 | - |
 +------------------------+----------------+----------------+

 Figure 1: Probabilities for algorithms based on chosen q, v and l
 values.

 For the AEAD_AES_128_CCM_8 algorithm when used as AEAD Algorithm for
 OSCORE, larger IA and CA values are achieved, depending on the value
 of ’q’, ’v’ and ’l’. Figure 2 shows the resulting IA and CA
 probabilities enjoyed by AEAD_AES_128_CCM_8, when taking different
 values of ’q’, ’v’ and ’l’ as input to the formulas defined in
 [I-D.irtf-cfrg-aead-limits].

 As shown in Figure 2, it is especially possible to achieve the lowest
 IA = 2^-54 and a good CA = 2^-70 by considering the largest possible
 value of the (q, v, l) triplet equal to (2^20, 2^10, 2^8), while
 still keeping a good security level. Note that the value of ’l’ does
 not impact on IA, while CA displays good values for every considered
 value of ’l’.

 When AEAD_AES_128_CCM_8 is used as AEAD Algorithm for OSCORE, this
 document recommends to use the triplet (q, v, l) = (2^20, 2^10, 2^8)
 and to never use a triplet (q, v, l) such that the resulting IA and
 CA probabilities are higher than 2^-54.

Höglund & Tiloca Expires 28 April 2022 [Page 5]

Internet-Draft Key Update for OSCORE (KUDOS) October 2021

 +-----------------------+----------------+----------------+
 | ’q’, ’v’ and ’l’ | IA probability | CA probability |
 |-----------------------+----------------+----------------|
 | q=2^20, v=2^20, l=2^8 | 2^-44 | 2^-70 |
 | q=2^15, v=2^20, l=2^8 | 2^-44 | 2^-80 |
 | q=2^10, v=2^20, l=2^8 | 2^-44 | 2^-90 |
 | q=2^20, v=2^15, l=2^8 | 2^-49 | 2^-70 |
 | q=2^15, v=2^15, l=2^8 | 2^-49 | 2^-80 |
 | q=2^10, v=2^15, l=2^8 | 2^-49 | 2^-90 |
 | q=2^20, v=2^14, l=2^8 | 2^-50 | 2^-70 |
 | q=2^15, v=2^14, l=2^8 | 2^-50 | 2^-80 |
 | q=2^10, v=2^14, l=2^8 | 2^-50 | 2^-90 |
 | q=2^20, v=2^10, l=2^8 | 2^-54 | 2^-70 |
 | q=2^15, v=2^10, l=2^8 | 2^-54 | 2^-80 |
 | q=2^10, v=2^10, l=2^8 | 2^-54 | 2^-90 |
 |-----------------------+----------------+----------------|
 | q=2^20, v=2^20, l=2^6 | 2^-44 | 2^-74 |
 | q=2^15, v=2^20, l=2^6 | 2^-44 | 2^-84 |
 | q=2^10, v=2^20, l=2^6 | 2^-44 | 2^-94 |
 | q=2^20, v=2^15, l=2^6 | 2^-49 | 2^-74 |
 | q=2^15, v=2^15, l=2^6 | 2^-49 | 2^-84 |
 | q=2^10, v=2^15, l=2^6 | 2^-49 | 2^-94 |
 | q=2^20, v=2^14, l=2^6 | 2^-50 | 2^-74 |
 | q=2^15, v=2^14, l=2^6 | 2^-50 | 2^-84 |
 | q=2^10, v=2^14, l=2^6 | 2^-50 | 2^-94 |
 | q=2^20, v=2^10, l=2^6 | 2^-54 | 2^-74 |
 | q=2^15, v=2^10, l=2^6 | 2^-54 | 2^-84 |
 | q=2^10, v=2^10, l=2^6 | 2^-54 | 2^-94 |
 +-----------------------+----------------+----------------+

 Figure 2: Probabilities for AEAD_AES_128_CCM_8 based on chosen q,
 v and l values.

 The algorithms using AES presented in this draft all use a block size
 of 16 bytes (128 bits), while AEAD_CHACHA20_POLY1305 uses a block
 size of 64 bytes (512 bits). As ’l’ is defined as the maximum size
 of each message in blocks, different block sizes will result in
 different maximum messages sizes for the same value of ’l’. Figure 3
 presents the resulting maximum message size in bytes for the
 different algorithms and values of ’l’ presented in this document.

Höglund & Tiloca Expires 28 April 2022 [Page 6]

Internet-Draft Key Update for OSCORE (KUDOS) October 2021

 +------------------------+----------+----------+-----------+
 | Algorithm name | l=2^6 in | l=2^8 in | l=2^10 in |
 | | bytes | bytes | bytes |
 |------------------------+----------+----------|-----------|
 | AEAD_AES_128_CCM | 1024 | 4096 | 16384 |
 | AEAD_AES_128_GCM | 1024 | 4096 | 16384 |
 | AEAD_AES_256_GCM | 1024 | 4096 | 16384 |
 | AEAD_AES_128_CCM_8 | 1024 | 4096 | 16384 |
 | AEAD_CHACHA20_POLY1305 | 4096 | 16384 | 65536 |
 +------------------------+----------+----------+-----------+

 Figure 3: Maximum length of each message (in bytes)

2.2. Additional Information in the Security Context

 In addition to what defined in Section 3.1 of [RFC8613], the OSCORE
 Security Context MUST also include the following information.

2.2.1. Common Context

 The Common Context is extended to include the following parameter.

 * ’exp’: with value the expiration time of the OSCORE Security
 Context, as a non-negative integer. The parameter contains a
 numeric value representing the number of seconds from
 1970-01-01T00:00:00Z UTC until the specified UTC date/time,
 ignoring leap seconds, analogous to what specified for NumericDate
 in Section 2 of [RFC7519].

 At the time indicated in this field, a peer MUST stop using this
 Security Context to process any incoming or outgoing message, and
 is required to establish a new Security Context to continue
 OSCORE-protected communications with the other peer.

2.2.2. Sender Context

 The Sender Context is extended to include the following parameters.

 * ’count_q’: a non-negative integer counter, keeping track of the
 current ’q’ value for the Sender Key. At any time, ’count_q’ has
 as value the number of messages that have been encrypted using the
 Sender Key. The value of ’count_q’ is set to 0 when establishing
 the Sender Context.

 * ’limit_q’: a non-negative integer, which specifies the highest
 value that ’count_q’ is allowed to reach, before stopping using
 the Sender Key to process outgoing messages.

Höglund & Tiloca Expires 28 April 2022 [Page 7]

Internet-Draft Key Update for OSCORE (KUDOS) October 2021

 The value of ’limit_q’ depends on the AEAD algorithm specified in
 the Common Context, considering the properties of that algorithm.
 The value of ’limit_q’ is determined according to Section 2.1.1.

2.2.3. Recipient Context

 The Recipient Context is extended to include the following
 parameters.

 * ’count_v’: a non-negative integer counter, keeping track of the
 current ’v’ value for the Recipient Key. At any time, ’count_v’
 has as value the number of failed decryptions occurred on incoming
 messages using the Recipient Key. The value of ’count_v’ is set to
 0 when establishing the Recipient Context.

 * ’limit_v’: a non-negative integer, which specifies the highest
 value that ’count_v’ is allowed to reach, before stopping using
 the Recipient Key to process incoming messages.

 The value of ’limit_v’ depends on the AEAD algorithm specified in
 the Common Context, considering the properties of that algorithm.
 The value of ’limit_v’ is determined according to Section 2.1.1.

2.3. OSCORE Messages Processing

 In order to keep track of the ’q’ and ’v’ values and ensure that AEAD
 keys are not used beyond reaching their limits, the processing of
 OSCORE messages is extended as defined in this section. A limitation
 that is introduced is that, in order to not exceed the selected value
 for ’l’, the total size of the COSE plaintext, authentication Tag,
 and possible cipher padding for a message may not exceed the block
 size for the selected algorithm multiplied with ’l’.

 In particular, the processing of OSCORE messages follows the steps
 outlined in Section 8 of [RFC8613], with the additions defined below.

2.3.1. Protecting a Request or a Response

 Before encrypting the COSE object using the Sender Key, the ’count_q’
 counter MUST be incremented.

 If ’count_q’ exceeds the ’limit_q’ limit, the message processing MUST
 be aborted. From then on, the Sender Key MUST NOT be used to encrypt
 further messages.

Höglund & Tiloca Expires 28 April 2022 [Page 8]

Internet-Draft Key Update for OSCORE (KUDOS) October 2021

2.3.2. Verifying a Request or a Response

 If an incoming message is detected to be a replay (see Section 7.4 of
 [RFC8613]), the ’count_v’ counter MUST NOT be incremented.

 If the decryption and verification of the COSE object using the
 Recipient Key fails, the ’count_v’ counter MUST be incremented.

 After ’count_v’ has exceeded the ’limit_v’ limit, incoming messages
 MUST NOT be decrypted and verified using the Recipient Key, and their
 processing MUST be aborted.

3. Current methods for Rekeying OSCORE

 Before the limit of ’q’ or ’v’ defined in Section 2.1.1 has been
 reached for an OSCORE Security Context, the two peers have to
 establish a new OSCORE Security Context, in order to continue using
 OSCORE for secure communication.

 In practice, the two peers have to establish new Sender and Recipient
 Keys, as the keys actually used by the AEAD algorithm. When this
 happens, both peers reset their ’count_q’ and ’count_v’ values to 0
 (see Section 2.2).

 Other specifications define a number of ways to accomplish this, as
 summarized below.

 * The two peers can run the procedure defined in Appendix B.2 of
 [RFC8613]. That is, the two peers exchange three or four
 messages, protected with temporary Security Contexts adding
 randomness to the ID Context.

 As a result, the two peers establish a new OSCORE Security Context
 with new ID Context, Sender Key and Recipient Key, while keeping
 the same OSCORE Master Secret and OSCORE Master Salt from the old
 OSCORE Security Context.

 This procedure does not require any additional components to what
 OSCORE already provides, and it does not provide perfect forward
 secrecy.

 The procedure defined in Appendix B.2 of [RFC8613] is used in
 6TiSCH networks [RFC7554][RFC8180] when handling failure events.
 That is, a node acting as Join Registrar/Coordinator (JRC) assists
 new devices, namely "pledges", to securely join the network as per
 the Constrained Join Protocol [RFC9031]. In particular, a pledge
 exchanges OSCORE-protected messages with the JRC, from which it
 obtains a short identifier, link-layer keying material and other

Höglund & Tiloca Expires 28 April 2022 [Page 9]

Internet-Draft Key Update for OSCORE (KUDOS) October 2021

 configuration parameters. As per Section 8.3.3 of [RFC9031], a
 JRC that experiences a failure event may likely lose information
 about joined nodes, including their assigned identifiers. Then,
 the reinitialized JRC can establish a new OSCORE Security Context
 with each pledge, through the procedure defined in Appendix B.2 of
 [RFC8613].

 * The two peers can run the OSCORE profile
 [I-D.ietf-ace-oscore-profile] of the Authentication and
 Authorization for Constrained Environments (ACE) Framework
 [I-D.ietf-ace-oauth-authz].

 When a CoAP client uploads an Access Token to a CoAP server as an
 access credential, the two peers also exchange two nonces. Then,
 the two peers use the two nonces together with information
 provided by the ACE Authorization Server that issued the Access
 Token, in order to derive an OSCORE Security Context.

 This procedure does not provide perfect forward secrecy.

 * The two peers can run the EDHOC key exchange protocol based on
 Diffie-Hellman and defined in [I-D.ietf-lake-edhoc], in order to
 establish a pseudo-random key in a mutually authenticated way.

 Then, the two peers can use the established pseudo-random key to
 derive external application keys. This allows the two peers to
 securely derive especially an OSCORE Master Secret and an OSCORE
 Master Salt, from which an OSCORE Security Context can be
 established.

 This procedure additionally provides perfect forward secrecy.

 * If one peer is acting as LwM2M Client and the other peer as LwM2M
 Server, according to the OMA Lightweight Machine to Machine Core
 specification [LwM2M], then the LwM2M Client peer may take the
 initiative to bootstrap again with the LwM2M Bootstrap Server, and
 receive again an OSCORE Security Context. Alternatively, the
 LwM2M Server can instruct the LwM2M Client to initiate this
 procedure.

 If the OSCORE Security Context information on the LwM2M Bootstrap
 Server has been updated, the LwM2M Client will thus receive a
 fresh OSCORE Security Context to use with the LwM2M Server.

Höglund & Tiloca Expires 28 April 2022 [Page 10]

Internet-Draft Key Update for OSCORE (KUDOS) October 2021

 In addition to that, the LwM2M Client, the LwM2M Server as well as
 the LwM2M Bootstrap server are required to use the procedure
 defined in Appendix B.2 of [RFC8613] and overviewed above, when
 they use a certain OSCORE Security Context for the first time
 [LwM2M-Transport].

 Manually updating the OSCORE Security Context at the two peers should
 be a last resort option, and it might often be not practical or
 feasible.

 Even when any of the alternatives mentioned above is available, it is
 RECOMMENDED that two OSCORE peers update their Security Context by
 using the KUDOS procedure as defined in Section 4 of this document.

 It is RECOMMENDED that the peer initiating the key update procedure
 starts it before reaching the ’q’ or ’v’ limits. Otherwise, the AEAD
 keys possibly to be used during the key update procedure itself may
 already be or become invalid before the rekeying is completed, which
 may prevent a successful establishment of the new OSCORE Security
 Context altogether.

4. Key Update for OSCORE (KUDOS)

 This section defines KUDOS, a lightweight procedure that two OSCORE
 peers can use to update their keying material and establish a new
 OSCORE Security Context.

 KUDOS relies on the support function updateCtx() defined in
 Section 4.2 and the message exchange defined in Section 4.3. The
 following properties are fulfilled.

 * KUDOS can be initiated by either peer. In particular, the client
 or the server may start KUDOS by sending the first rekeying
 message.

 * The new OSCORE Security Context enjoys Perfect Forward Secrecy.

 * The same ID Context value used in the old OSCORE Security Context
 is preserved in the new Security Context. Furthermore, the ID
 Context value never changes throughout the KUDOS execution.

 * KUDOS is robust against a peer rebooting, and it especially avoids
 the reuse of AEAD (nonce, key) pairs.

 * KUDOS completes in one round trip. The two peers achieve mutual
 proof-of-possession in the following exchange, which is protected
 with the newly established OSCORE Security Context.

Höglund & Tiloca Expires 28 April 2022 [Page 11]

Internet-Draft Key Update for OSCORE (KUDOS) October 2021

4.1. Extensions to the OSCORE Option

 In order to support the message exchange for establishing a new
 OSCORE Security Context as defined in Section 4.3, this document
 extends the use of the OSCORE option originally defined in [RFC8613]
 as follows.

 * This document defines the usage of the seventh least significant
 bit, called "Extension-1 Flag", in the first byte of the OSCORE
 option containing the OSCORE flag bits. This flag bit is
 specified in Section 6.1.

 When the Extension-1 Flag is set to 1, the second byte of the
 OSCORE option MUST include the set of OSCORE flag bits 8-15.

 * This document defines the usage of the first least significant bit
 "ID Detail Flag", ’d’, in the second byte of the OSCORE option
 containing the OSCORE flag bits. This flag bit is specified in
 Section 6.1.

 When it is set to 1, the compressed COSE object contains an ’id
 detail’, to be used for the steps defined in Section 4.3. In
 particular, the 1 byte following ’kid context’ (if any) encodes
 the length x of ’id detail’, and the following x bytes encode ’id
 detail’.

 * The second-to-eighth least significant bits in the second byte of
 the OSCORE option containing the OSCORE flag bits are reserved for
 future use. These bits SHALL be set to zero when not in use.
 According to this specification, if any of these bits are set to
 1, the message is considered to be malformed and decompression
 fails as specified in item 2 of Section 8.2 of [RFC8613].

 Figure 4 shows the OSCORE option value including also ’id detail’.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 <----- n bytes ----->
 +-+-+-+-+-+-+-+-+---+---+---+---+---+---+---+---+---------------------+
 |0|1|0|h|k| n | 0 | 0 | 0 | 0 | 0 | 0 | 0 | d | Partial IV (if any) |
 +-+-+-+-+-+-+-+-+---+---+---+---+---+---+---+---+---------------------+

 <- 1 byte -> <----- s bytes ------> <- 1 byte -> <----- x bytes ---->
 +------------+----------------------+---------------------------------+
 | s (if any) | kid context (if any) | x (if any) | id detail (if any) |
 +------------+----------------------+------------+--------------------+

 +------------------+
 | kid (if any) ... |
 +------------------+

Höglund & Tiloca Expires 28 April 2022 [Page 12]

Internet-Draft Key Update for OSCORE (KUDOS) October 2021

 Figure 4: The OSCORE option value, including ’id detail’

4.2. Function for Security Context Update

 The updateCtx() function shown in Figure 5 takes as input a nonce N
 as well as an OSCORE Security Context CTX_IN, and returns as output a
 new OSCORE Security Context CTX_OUT.

 As a first step, the updateCtx() function derives the new values of
 the Master Secret and Master Salt for CTX_OUT, according to one of
 the two following methods. The used method depends on how the two
 peers established their original Security Context, i.e., the Security
 Context that they shared before performing KUDOS with one another for
 the first time.

 * If the original Security Context was established by running the
 EDHOC protocol [I-D.ietf-lake-edhoc], the following applies.

 First, the EDHOC key PRK_4x3m shared by the two peers is updated
 using the EDHOC-KeyUpdate() function defined in Section 4.4 of
 [I-D.ietf-lake-edhoc], which takes the nonce N as input.

 After that, the EDHOC-Exporter() function defined in Section 4.3
 of [I-D.ietf-lake-edhoc] is used to derive the new values for the
 Master Secret and Master Salt, consistently with what is defined
 in Appendix A.2 of [I-D.ietf-lake-edhoc]. In particular, the
 context parameter provided as second argument to the EDHOC-
 Exporter() function is the empty CBOR byte string (0x40)
 [RFC8949], which is denoted as h’’.

 Note that, compared to the compliance requirements in Section 7 of
 [I-D.ietf-lake-edhoc], a peer MUST support the EDHOC-KeyUpdate()
 function, in case it establishes an original Security Context
 through the EDHOC protocol and intends to perform KUDOS.

 * If the original Security Context was established through other
 means than the EDHOC protocol, the new Master Secret is derived
 through an HKDF-Expand() step, which takes as input N as well as
 the Master Secret value from the Security Context CTX_IN.
 Instead, the new Master Salt takes N as value.

 In either case, the derivation of new values follows the same
 approach used in TLS 1.3, which is also based on HKDF-Expand (see
 Section 7.1 of [RFC8446]) and used for computing new keying material
 in case of key update (see Section 4.6.3 of [RFC8446]).

Höglund & Tiloca Expires 28 April 2022 [Page 13]

Internet-Draft Key Update for OSCORE (KUDOS) October 2021

 After that, the new Master Secret and Master Salt parameters are used
 to derive a new Security Context CTX_OUT as per Section 3.2 of
 [RFC8613]. Any other parameter required for the derivation takes the
 same value as in the Security Context CTX_IN. Finally, the function
 returns the newly derived Security Context CTX_OUT.

 updateCtx(N, CTX_IN) {

 CTX_OUT // The new Security Context
 MSECRET_NEW // The new Master Secret
 MSALT_NEW // The new Master Salt

 if <the original Security Context was established through EDHOC> {

 EDHOC-KeyUpdate(N)
 // This results in updating the key PRK_4x3m of the
 // EDHOC session, i.e., PRK_4x3m = Extract(N, PRK_4x3m)

 MSECRET_NEW = EDHOC-Exporter("OSCORE_Master_Secret",
 h’’, key_length)
 = EDHOC-KDF(PRK_4x3m, TH_4,
 "OSCORE_Master_Secret", h’’, key_length)

 MSALT_NEW = EDHOC-Exporter("OSCORE_Master_Salt",
 h’’, salt_length)
 = EDHOC-KDF(PRK_4x3m, TH_4,
 "OSCORE_Master_Salt", h’’, salt_length)

 }
 else {
 Master Secret Length = < Size of CTX_IN.MasterSecret in bytes >

 MSECRET_NEW = HKDF-Expand-Label(CTX_IN.MasterSecret, Label,
 N, Master Secret Length)
 = HKDF-Expand(CTX_IN.MasterSecret, HkdfLabel,
 Master Secret Length)

 MSALT_NEW = N;
 }

 < Derive CTX_OUT using MSECRET_NEW and MSALT_NEW,
 together with other parameters from CTX_IN >

 Return CTX_OUT;

 }

 Where HkdfLabel is defined as

Höglund & Tiloca Expires 28 April 2022 [Page 14]

Internet-Draft Key Update for OSCORE (KUDOS) October 2021

 struct {
 uint16 length = Length;
 opaque label<7..255> = "oscore " + Label;
 opaque context<0..255> = Context;
 } HkdfLabel;

 Figure 5: Function for deriving a new OSCORE Security Context

4.3. Establishment of the New OSCORE Security Context

 This section defines the actual KUDOS procedure performed by two
 peers to update their OSCORE keying material. Before starting KUDOS,
 the two peers share the OSCORE Security Context CTX_OLD. Once
 completed the KUDOS execution, the two peers agree on a newly
 established OSCORE Security Context CTX_NEW.

 In particular, each peer contributes by generating a fresh value R1
 or R2, and providing it to the other peer. The byte string
 concatenation of the two values, hereafter denoted as R1 | R2, is
 used as input N by the updateCtx() function, in order to derive the
 new OSCORE Security Context CTX_NEW. As for any new OSCORE Security
 Context, the Sender Sequence Number and the replay window are re-
 initialized accordingly (see Section 3.2.2 of [RFC8613]).

 Once a peer has successfully derived the new OSCORE Security Context
 CTX_NEW, that peer MUST terminate all the ongoing observations it has
 with the other peer as protected with the old Security Context
 CTX_OLD.

 Once a peer has successfully decrypted and verified an incoming
 message protected with CTX_NEW, that peer MUST discard the old
 Security Context CTX_OLD.

 KUDOS can be started by the client or the server, as defined in
 Section 4.3.1 and Section 4.3.2, respectively. The following
 properties hold for both the client- and server-initiated version of
 KUDOS.

 * The initiator always offers the fresh value R1.

 * The responder always offers the fresh value R2.

 * The responder is always the first one deriving the new OSCORE
 Security Context CTX_NEW.

 * The initiator is always the first one achieving key confirmation,
 hence able to safely discard the old OSCORE Security Context
 CTX_OLD.

Höglund & Tiloca Expires 28 April 2022 [Page 15]

Internet-Draft Key Update for OSCORE (KUDOS) October 2021

 * Both the initiator and the responder use the same respective
 OSCORE Sender ID and Recipient ID. Also, they both preserve and
 use the same OSCORE ID Context from CTX_OLD.

 The length of the nonces R1, and R2 is application specific. The
 application needs to set the length of each nonce such that the
 probability of its value being repeated is negligible; typically, at
 least 8 bytes long.

4.3.1. Client-Initiated Key Update

 Figure 6 shows the KUDOS workflow with the client acting as
 initiator.

 Client Server
 (initiator) (responder)
 | |
 Generate R1 | |
 | |
 CTX_1 = | |
 updateCtx(R1, | |
 CTX_OLD) | |
 | |
 | Request #1 |
 Protect with CTX_1 |------------------->|
 | OSCORE Option: | CTX_1 =
 | ... | update(R1,
 | d flag: 1 | CTX_OLD)
 | ... |
 | ID Detail: R1 | Verify with CTX_1
 | ... |
 | | Generate R2
 | |
 | | CTX_NEW =
 | | update(R1|R2,
 | | CTX_OLD)
 | |
 | Response #1 |
 |<-------------------| Protect with CTX_NEW
 CTX_NEW = | OSCORE Option: |
 updateCtx(R1|R2, | ... |
 CTX_OLD) | d flag: 1 |
 | ... |
 Verify with CTX_NEW | ID Detail: R2 |
 | ... |
 Discard CTX_OLD | |
 | |

Höglund & Tiloca Expires 28 April 2022 [Page 16]

Internet-Draft Key Update for OSCORE (KUDOS) October 2021

 // The actual key update process ends here.
 // The two peers can use the new Security Context CTX_NEW.

 | |
 | Request #2 |
 Protect with CTX_NEW |------------------->|
 | | Verify with CTX_NEW
 | |
 | | Discard CTX_OLD
 | |
 | Response #2 |
 |<-------------------| Protect with CTX_NEW
 Verify with CTX_NEW | |
 | |

 Figure 6: Client-Initiated KUDOS Workflow

 First, the client generates a random value R1, and uses the nonce N =
 R1 together with the old Security Context CTX_OLD, in order to derive
 a temporary Security Context CTX_1. Then, the client sends an OSCORE
 request to the server, protected with the Security Context CTX_1. In
 particular, the request has the ’d’ flag bit set to 1 and specifies
 R1 as ’id detail’ (see Section 4.1).

 Upon receiving the OSCORE request, the server retrieves the value R1
 from the ’id detail’ of the request, and uses the nonce N = R1
 together with the old Security Context CTX_OLD, in order to derive
 the temporary Security Context CTX_1. Then, the server verifies the
 request by using the Security Context CTX_1.

 After that, the server generates a random value R2, and uses the
 nonce N = R1 | R2 together with the old Security Context CTX_OLD, in
 order to derive the new Security Context CTX_NEW. Then, the server
 sends an OSCORE response to the client, protected with the new
 Security Context CTX_NEW. In particular, the response has the ’d’
 flag bit set to 1 and specifies R2 as ’id detail’.

 Upon receiving the OSCORE response, the client retrieves the value R2
 from the ’id detail’ of the response. Since the client has received
 a response to an OSCORE request it made with the ’d’ flag bit set to
 1, the client uses the nonce N = R1 | R2 together with the old
 Security Context CTX_OLD, in order to derive the new Security Context
 CTX_NEW. Finally, the client verifies the response by using the
 Security Context CTX_NEW and deletes the old Security Context
 CTX_OLD.

Höglund & Tiloca Expires 28 April 2022 [Page 17]

Internet-Draft Key Update for OSCORE (KUDOS) October 2021

 After that, the client can send a new OSCORE request protected with
 the new Security Context CTX_NEW. When successfully verifying the
 request using the Security Context CTX_NEW, the server deletes the
 old Security Context CTX_OLD and can reply with an OSCORE response
 protected with the new Security Context CTX_NEW.

 From then on, the two peers can protect their message exchanges by
 using the new Security Context CTX_NEW.

4.3.2. Server-Initiated Key Update

 Figure 7 shows the KUDOS workflow with the server acting as
 initiator.

Höglund & Tiloca Expires 28 April 2022 [Page 18]

Internet-Draft Key Update for OSCORE (KUDOS) October 2021

 Client Server
 (responder) (initiator)
 | |
 | Request #1 |
 Protect with CTX_OLD |------------------->|
 | | Verify with CTX_OLD
 | |
 | | Generate R1
 | |
 | | CTX_1 =
 | | updateCtx(R1,
 | | CTX_OLD)
 | |
 | Response #1 |
 |<-------------------| Protect with CTX_1
 CTX_1 = | OSCORE Option: |
 updateCtx(R1, | ... |
 CTX_OLD) | d flag: 1 |
 | ... |
 Verify with CTX_1 | ID Detail: R1 |
 | ... |
 Generate R2 | |
 | |
 CTX_NEW = | |
 updateCtx(R1|R2, | |
 CTX_OLD) | |
 | |
 | Request #2 |
 Protect with CTX_NEW |------------------->|
 | OSCORE Option: | CTX_NEW =
 | ... | updateCtx(R1|R2,
 | d flag: 1 | CTX_OLD)
 | ... |
 | ID Detail: R1|R2 | Verify with CTX_NEW
 | ... |
 | | Discard CTX_OLD
 | |

 // The actual key update process ends here.
 // The two peers can use the new Security Context CTX_NEW.

 | Response #2 |
 |<-------------------| Protect with CTX_NEW
 Verify with CTX_NEW | |
 | |
 Discard CTX_OLD | |
 | |

Höglund & Tiloca Expires 28 April 2022 [Page 19]

Internet-Draft Key Update for OSCORE (KUDOS) October 2021

 Figure 7: Server-Initiated KUDOS Workflow

 First, the client sends a normal OSCORE request to the server,
 protected with the old Security Context CTX_OLD and with the ’d’ flag
 bit set to 0.

 Upon receiving the OSCORE request and after having verified it with
 the old Security Context CTX_OLD as usual, the server generates a
 random value R1 and uses the nonce N = R1 together with the old
 Security Context CTX_OLD, in order to derive a temporary Security
 Context CTX_1. Then, the server sends an OSCORE response to the
 client, protected with the Security Context CTX_1. In particular,
 the response has the ’d’ flag bit set to 1 and specifies R1 as ’id
 detail’ (see Section 4.1).

 Upon receiving the OSCORE response, the client retrieves the value R1
 from the ’id detail’ of the response, and uses the nonce N = R1
 together with the old Security Context CTX_OLD, in order to derive
 the temporary Security Context CTX_1. Then, the client verifies the
 response by using the Security Context CTX_1.

 After that, the client generates a random value R2, and uses the
 nonce N = R1 | R2 together with the old Security Context CTX_OLD, in
 order to derive the new Security Context CTX_NEW. Then, the client
 sends an OSCORE request to the server, protected with the new
 Security Context CTX_NEW. In particular, the request has the ’d’
 flag bit set to 1 and specifies R1 | R2 as ’id detail’.

 Upon receiving the OSCORE request, the server retrieves the value
 R1 | R2 from the request. Then, the server verifies that: i) the
 value R1 is identical to the value R1 specified in a previous OSCORE
 response with the ’d’ flag bit set to 1; and ii) the value R1 | R2
 has not been received before in an OSCORE request with the ’d’ flag
 bit set to 1. If the verification succeeds, the server uses the
 nonce N = R1 | R2 together with the old Security Context CTX_OLD, in
 order to derive the new Security Context CTX_NEW. Finally, the
 server verifies the request by using the Security Context CTX_NEW and
 deletes the old Security Context CTX_OLD.

 After that, the server can send an OSCORE response protected with the
 new Security Context CTX_NEW. When successfully verifying the
 response using the Security Context CTX_NEW, the client deletes the
 old Security Context CTX_OLD.

 From then on, the two peers can protect their message exchanges by
 using the new Security Context CTX_NEW.

Höglund & Tiloca Expires 28 April 2022 [Page 20]

Internet-Draft Key Update for OSCORE (KUDOS) October 2021

4.4. Retention Policies

 Applications MAY define policies that allows a peer to also
 temporarily keep the old Security Context CTX_OLD, rather than simply
 overwriting it to become CTX_NEW. This allows the peer to decrypt
 late, still on-the-fly incoming messages protected with CTX_OLD.

 When enforcing such policies, the following applies.

 * Outgoing messages MUST be protected by using only CTX_NEW.

 * Incoming messages MUST first be attempted to decrypt by using
 CTX_NEW. If decryption fails, a second attempt can use CTX_OLD.

 * When an amount of time defined by the policy has elapsed since the
 establishment of CTX_NEW, the peer deletes CTX_OLD.

4.5. Discussion

 KUDOS is intended to deprecate and replace the procedure defined in
 Appendix B.2 of [RFC8613], as fundamentally achieving the same goal,
 while displaying a number of improvements and advantages.

 In particular, it is especially convenient for the handling of
 failure events concerning the JRC node in 6TiSCH networks (see
 Section 3). That is, among its intrinsic advantages compared to the
 procedure defined in Appendix B.2 of [RFC8613], KUDOS preserves the
 same ID Context value, when establishing a new OSCORE Security
 Context.

 Since the JRC uses ID Context values as identifiers of network nodes,
 namely "pledge identifiers", the above implies that the JRC does not
 have anymore to perform a mapping between a new, different ID Context
 value and a certain pledge identifier (see Section 8.3.3 of
 [RFC9031]). It follows that pledge identifiers can remain constant
 once assigned, and thus ID Context values used as pledge identifiers
 can be employed in the long-term as originally intended.

5. Security Considerations

 This document mainly covers security considerations about using AEAD
 keys in OSCORE and their usage limits, in addition to the security
 considerations of [RFC8613].

 Depending on the specific key update procedure used to establish a
 new OSCORE Security Context, the related security considerations also
 apply.

Höglund & Tiloca Expires 28 April 2022 [Page 21]

Internet-Draft Key Update for OSCORE (KUDOS) October 2021

 TODO: Add more considerations.

6. IANA Considerations

 This document has the following actions for IANA.

6.1. OSCORE Flag Bits Registry

 IANA is asked to add the following entries to the "OSCORE Flag Bits"
 registry within the "Constrained RESTful Environments (CoRE)
 Parameters" registry group.

 +----------+------------------+------------------------+-----------+
 | Bit | Name | Description | Reference |
 | Position | | | |
 +----------+------------------+------------------------+-----------+
1	Extension-1 Flag	Set to 1 if the OSCORE	[This
		Option specifies a	Document]
		second byte of OSCORE	
		flag bits	
+----------+------------------+------------------------+-----------+			
15	ID Detail Flag	Set to 1 if the	[This
		compressed COSE object	Document]
		contains ’id detail’	
 +----------+------------------+------------------------+-----------+

7. References

7.1. Normative References

 [I-D.ietf-lake-edhoc]
 Selander, G., Mattsson, J. P., and F. Palombini,
 "Ephemeral Diffie-Hellman Over COSE (EDHOC)", Work in
 Progress, Internet-Draft, draft-ietf-lake-edhoc-12, 20
 October 2021, <https://www.ietf.org/archive/id/draft-ietf-
 lake-edhoc-12.txt>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

Höglund & Tiloca Expires 28 April 2022 [Page 22]

Internet-Draft Key Update for OSCORE (KUDOS) October 2021

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8613] Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
 <https://www.rfc-editor.org/info/rfc8613>.

 [RFC8949] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", STD 94, RFC 8949,
 DOI 10.17487/RFC8949, December 2020,
 <https://www.rfc-editor.org/info/rfc8949>.

7.2. Informative References

 [I-D.ietf-ace-oauth-authz]
 Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
 H. Tschofenig, "Authentication and Authorization for
 Constrained Environments (ACE) using the OAuth 2.0
 Framework (ACE-OAuth)", Work in Progress, Internet-Draft,
 draft-ietf-ace-oauth-authz-45, 29 August 2021,
 <https://www.ietf.org/archive/id/draft-ietf-ace-oauth-
 authz-45.txt>.

 [I-D.ietf-ace-oscore-profile]
 Palombini, F., Seitz, L., Selander, G., and M. Gunnarsson,
 "OSCORE Profile of the Authentication and Authorization
 for Constrained Environments Framework", Work in Progress,
 Internet-Draft, draft-ietf-ace-oscore-profile-19, 6 May
 2021, <https://www.ietf.org/archive/id/draft-ietf-ace-
 oscore-profile-19.txt>.

 [I-D.irtf-cfrg-aead-limits]
 Günther, F., Thomson, M., and C. A. Wood, "Usage Limits on
 AEAD Algorithms", Work in Progress, Internet-Draft, draft-
 irtf-cfrg-aead-limits-03, 12 July 2021,
 <https://www.ietf.org/archive/id/draft-irtf-cfrg-aead-
 limits-03.txt>.

 [LwM2M] Open Mobile Alliance, "Lightweight Machine to Machine
 Technical Specification - Core, Approved Version 1.2, OMA-
 TS-LightweightM2M_Core-V1_2-20201110-A", November 2020,
 <http://www.openmobilealliance.org/release/LightweightM2M/
 V1_2-20201110-A/OMA-TS-LightweightM2M_Core-
 V1_2-20201110-A.pdf>.

Höglund & Tiloca Expires 28 April 2022 [Page 23]

Internet-Draft Key Update for OSCORE (KUDOS) October 2021

 [LwM2M-Transport]
 Open Mobile Alliance, "Lightweight Machine to Machine
 Technical Specification - Transport Bindings, Approved
 Version 1.2, OMA-TS-LightweightM2M_Transport-
 V1_2-20201110-A", November 2020,
 <http://www.openmobilealliance.org/release/LightweightM2M/
 V1_2-20201110-A/OMA-TS-LightweightM2M_Transport-
 V1_2-20201110-A.pdf>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC7554] Watteyne, T., Ed., Palattella, M., and L. Grieco, "Using
 IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the
 Internet of Things (IoT): Problem Statement", RFC 7554,
 DOI 10.17487/RFC7554, May 2015,
 <https://www.rfc-editor.org/info/rfc7554>.

 [RFC8180] Vilajosana, X., Ed., Pister, K., and T. Watteyne, "Minimal
 IPv6 over the TSCH Mode of IEEE 802.15.4e (6TiSCH)
 Configuration", BCP 210, RFC 8180, DOI 10.17487/RFC8180,
 May 2017, <https://www.rfc-editor.org/info/rfc8180>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC9031] Vuini, M., Ed., Simon, J., Pister, K., and M.
 Richardson, "Constrained Join Protocol (CoJP) for 6TiSCH",
 RFC 9031, DOI 10.17487/RFC9031, May 2021,
 <https://www.rfc-editor.org/info/rfc9031>.

Acknowledgments

 The authors sincerely thank Christian Amsuess, John Mattsson and
 Goeran Selander for their feedback and comments.

 The work on this document has been partly supported by VINNOVA and
 the Celtic-Next project CRITISEC; and by the H2020 project SIFIS-Home
 (Grant agreement 952652).

Authors’ Addresses

Höglund & Tiloca Expires 28 April 2022 [Page 24]

Internet-Draft Key Update for OSCORE (KUDOS) October 2021

 Rikard Höglund
 RISE AB
 Isafjordsgatan 22
 SE-16440 Stockholm Kista
 Sweden

 Email: rikard.hoglund@ri.se

 Marco Tiloca
 RISE AB
 Isafjordsgatan 22
 SE-16440 Stockholm Kista
 Sweden

 Email: marco.tiloca@ri.se

Höglund & Tiloca Expires 28 April 2022 [Page 25]

