
Network Working Group R. Wilton, Ed.
Internet-Draft Cisco Systems, Inc.
Updates: 6020, 7950, 8407, 8525 (if approved) R. Rahman, Ed.
Intended status: Standards Track Equinix
Expires: 2 September 2024 B. Lengyel, Ed.
 Ericsson
 J. Clarke
 Cisco Systems, Inc.
 J. Sterne
 Nokia
 1 March 2024

 Updated YANG Module Revision Handling
 draft-ietf-netmod-yang-module-versioning-11

Abstract

 This document refines the RFC 7950 module update rules. It specifies
 a new YANG module update procedure that can document when non-
 backwards-compatible changes have occurred during the evolution of a
 YANG module. It extends the YANG import statement with a minimum
 revision suggestion to help document inter-module dependencies. It
 provides guidelines for managing the lifecycle of YANG modules and
 individual schema nodes. This document updates RFC 7950, RFC 6020,
 RFC 8407 and RFC 8525.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 2 September 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Wilton, et al. Expires 2 September 2024 [Page 1]

Internet-Draft Updated YANG Module Revision Handling March 2024

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Updates to YANG RFCs 4
 2. Terminology and Conventions 4
 3. Refinements to YANG revision handling 5
 3.1. Updating a YANG module with a new revision 6
 3.1.1. Backwards-compatible rules 7
 3.1.2. Non-backwards-compatible changes 8
 3.2. non-backwards-compatible extension statement 8
 3.3. Removing revisions from the revision history 8
 3.4. Examples for updating the YANG module revision history . 9
 4. Guidance for revision selection on imports 12
 4.1. Recommending a minimum revision for module imports . . . 13
 4.1.1. Module import examples 14
 5. New ietf-yang-status-conformance YANG module 15
 5.1. Reporting how deprecated and obsolete nodes are
 handled . 15
 6. Guidelines for using the YANG module update rules 16
 6.1. Guidelines for YANG module authors 16
 6.1.1. Making non-backwards-compatible changes to a YANG
 module . 17
 6.2. Versioning Considerations for Clients 18
 7. Module Versioning Extension YANG Modules 18
 8. Security considerations 24
 8.1. Security considerations for module revisions 24
 8.2. Security considerations for the modules defined in this
 document . 25
 9. IANA Considerations . 25
 9.1. YANG Module Registrations 25
 9.2. Guidance for versioning in IANA maintained YANG
 modules . 26
 10. References . 27
 10.1. Normative References 27
 10.2. Informative References 28
 Appendix A. Examples of changes that are NBC 30
 Appendix B. Examples of applying the NBC change guidelines . . . 31
 B.1. Removing a data node 31
 B.2. Changing the type of a leaf node 31

Wilton, et al. Expires 2 September 2024 [Page 2]

Internet-Draft Updated YANG Module Revision Handling March 2024

 B.3. Reducing the range of a leaf node 32
 B.4. Changing the key of a list 32
 B.5. Renaming a node . 33
 Contributors . 33
 Acknowledgments . 34
 Authors’ Addresses . 34

1. Introduction

 The current YANG [RFC7950] module update rules require that updates
 of YANG modules preserve strict backwards compatibility. This causes
 problems as described in [I-D.ietf-netmod-yang-versioning-reqs].
 This document recognizes the need to sometimes allow YANG modules to
 evolve with non-backwards-compatible changes, which can cause
 breakage to clients and when importing YANG modules. Accepting that
 non-backwards-compatible changes do sometimes occur -- e.g., for
 bugfixes -- it is important to have mechanisms to report when these
 changes occur, and to manage their effect on clients and the broader
 YANG ecosystem.

 Several other documents build on this document with additional
 capabilities. [I-D.ietf-netmod-yang-schema-comparison] specifies an
 algorithm that can be used to compare two revisions of a YANG schema
 and provide granular information to allow module users to determine
 if they are impacted by changes between the revisions. The
 [I-D.ietf-netmod-yang-semver] document defines a YANG extension that
 tags a YANG artifact with a version identifier based on semantic
 versioning. YANG packages [I-D.ietf-netmod-yang-packages] provides a
 mechanism to group sets of related YANG modules together in order to
 manage schema and conformance of YANG modules as a cohesive set
 instead of individually. Finally,
 [I-D.ietf-netmod-yang-ver-selection] provides a schema selection
 mechanism that allows a client to choose which schemas to use when
 interacting with a server from the available schema that are
 supported and advertised by the server. These other documents are
 mentioned here as informative references. Support of the other
 documents is not required in an implementation in order to take
 advantage of the mechanisms and functionality offered by this module
 versioning document.

 The document comprises four parts:

 * Refinements to the YANG 1.1 module revision update procedure,
 supported by new extension statements to indicate when a revision
 contains non-backwards-compatible changes.

Wilton, et al. Expires 2 September 2024 [Page 3]

Internet-Draft Updated YANG Module Revision Handling March 2024

 * Updated guidance for revision selection on imports and a YANG
 extension statement allowing YANG module imports to document an
 earliest module revision that may satisfy the import dependency.

 * Updates and augmentations to ietf-yang-library to report how
 "deprecated" and "obsolete" nodes are handled by a server.

 * Guidelines for how the YANG module update rules defined in this
 document should be used, along with examples.

 Note to RFC Editor (To be removed by RFC Editor)

 Open issues are tracked at https://github.com/netmod-wg/yang-ver-dt/
 issues.

1.1. Updates to YANG RFCs

 This document updates [RFC7950] section 11 and [RFC6020] section 10.
 Section 3 describes modifications to YANG revision handling and
 update rules, and Section 4.1 describes a YANG extension statement to
 describe potential YANG import revision dependencies.

 This document updates [RFC8407] section 4.7. Section 6 provides
 guidelines on managing the lifecycle of YANG modules that may contain
 non-backwards-compatible changes and a branched revision history.

 This document updates [RFC8525] with augmentations to include two
 boolean leafs to indicate whether status deprecated and status
 obsolete schema nodes are implemented by the server.

2. Terminology and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document makes use of the following terminology introduced in
 the YANG 1.1 Data Modeling Language [RFC7950]:

 * schema node

 In addition, this document uses the following terminology:

Wilton, et al. Expires 2 September 2024 [Page 4]

Internet-Draft Updated YANG Module Revision Handling March 2024

 * YANG module revision: An instance of a YANG module, uniquely
 identified with a revision date, with no implied ordering or
 backwards compatibility between different revisions of the same
 module.

 * Backwards-compatible (BC) change: A backwards-compatible change
 between two YANG module revisions, as defined in Section 3.1.1

 * Non-backwards-compatible (NBC) change: A non-backwards-compatible
 change between two YANG module revisions, as defined in
 Section 3.1.2

3. Refinements to YANG revision handling

 [RFC7950] and [RFC6020] assume, but do not explicitly state, that the
 revision history for a YANG module or submodule is strictly linear,
 i.e., it is prohibited to have two independent revisions of a YANG
 module or submodule that are both directly derived from the same
 parent revision.

 This document clarifies [RFC7950] and [RFC6020] to explicitly allow
 non-linear development of YANG module and submodule revisions, so
 that they MAY have multiple revisions that directly derive from the
 same parent revision. As per [RFC7950] and [RFC6020], YANG module
 and submodule revisions continue to be uniquely identified by their
 revision date, and hence all revisions of a given module or submodule
 MUST have unique revision dates.

 However, using revision dates alone to identify revisions of a YANG
 module versioned with a branched revision history is likely to be
 confusing because the relationship between module revisions is no
 longer guaranteed to be chronologically ordered. Instead, for
 modules that may use a branched revision history, it is RECOMMENDED
 to use a version identifier, such as the one described in
 [I-D.ietf-netmod-yang-semver], that better describes the semantic
 relationship between the revisions.

 For a given YANG module revision, revision B is defined as being
 derived from revision A, if revision A is listed in the revision
 history of revision B. Although this document allows for a branched
 revision history, a given YANG module revision history does not
 contain all revisions in all possible branches, it only lists those
 from which is was derived, i.e., the module revision’s history
 describes a single path of derived revisions back to the root of the
 module’s revision history.

Wilton, et al. Expires 2 September 2024 [Page 5]

Internet-Draft Updated YANG Module Revision Handling March 2024

 A corollary to the text above is that the ancestry (derived
 relationship) between two module or submodule revisions cannot be
 determined by comparing the module or submodule revision date or
 version identifier alone - the revision history must be consulted.

 A module’s name and revision date identifies a specific immutable
 definition of that module within its revision history. Hence, if a
 module includes submodules then to ensure that the module’s content
 is uniquely defined, the module’s "include" statements SHOULD use
 "revision-date" substatements to specify the exact revision date of
 each included submodule. When a module does not include its
 submodules by revision-date, the revision of submodules used cannot
 be derived from the including module. Mechanisms such as YANG
 packages [I-D.ietf-netmod-yang-packages], and YANG library [RFC8525],
 could be used to specify the exact submodule revisions used when the
 submodule revision date is not constrained by the "include"
 statement.

 [RFC7950] section 11 and [RFC6020] section 10 require that all
 updates to a YANG module are backwards-compatible (BC) to the
 previous revision of the module. This document introduces a method
 to indicate that an non-backwards-compatible (NBC) change has
 occurred between module revisions: this is done by using a new "non-
 backwards-compatible" YANG extension statement in the module revision
 history.

 Two revisions of a module or submodule MAY have identical content
 except for the revision history. This could occur, for example, if a
 module or submodule has a branched history and identical changes are
 applied in multiple branches.

3.1. Updating a YANG module with a new revision

 This section updates [RFC7950] section 11 and [RFC6020] section 10 to
 refine the rules for permissible changes when a new YANG module
 revision is created.

 New module revisions SHOULD NOT contain NBC changes because they
 often create problems for clients, however they can be helpful in
 some scenarios, and hence are discouraged, but allowed. For example:

 * Bugfixes, particularly where the likely client impact is low or
 the module is changed to reflect current server behavior.

 * To mark nodes as obsolete (or remove them), after a suitable
 deprecation period.

Wilton, et al. Expires 2 September 2024 [Page 6]

Internet-Draft Updated YANG Module Revision Handling March 2024

 * To refine new and unstable modules (or new and unstable nodes
 within existing, stable modules).

 * Restructuring a module to add new functionality where the cost of
 adding the functionality in a BC manner is disproportionate to the
 expected benefits of greater client backwards compatibility.

 A YANG extension, defined in Section 3.2, is used to signal the
 potential for incompatibility to existing module users and readers.

 As per [RFC7950] and [RFC6020], all published revisions of a module
 are given a new unique revision date.

3.1.1. Backwards-compatible rules

 A change between two module revisions is defined as being "backwards-
 compatible" if the change conforms to the module update rules
 specified in [RFC7950] section 11 and [RFC6020] section 10, updated
 by the following rules:

 * A "status" "deprecated" statement MAY be added, or changed from
 "current" to "deprecated", but adding or changing "status" to
 "obsolete" is a non-backwards-compatible change.

 * YANG schema nodes with a "status" "obsolete" substatement MAY be
 removed from published modules, and the removal is classified as a
 backwards-compatible change. In some circumstances it may be
 helpful to retain the obsolete definitions since their identifiers
 may still be referenced by other modules and to ensure that their
 identifiers are not reused with a different meaning.

 * A statement that is defined using the YANG "extension" statement
 MAY be added, removed, or changed, if it does not change the
 semantics of the module. Extension statement definitions SHOULD
 specify whether adding, removing, or changing statements defined
 by that extension are backwards-compatible or non-backwards-
 compatible.

 * Any change made to the "revision-date" or "recommended-min-date"
 substatements of an "import" statement, including adding new
 "revision-date" or "recommended-min-date" substatements, changing
 the argument of any "revision-date" or "recommended-min-date"
 substatetements, or removing any "revision-date" or "recommended-
 min-date" substatements, is classified as backwards-compatible.

 * Any changes (including whitespace or formatting changes) that do
 not change the semantic meaning of the module are backwards-
 compatible.

Wilton, et al. Expires 2 September 2024 [Page 7]

Internet-Draft Updated YANG Module Revision Handling March 2024

3.1.2. Non-backwards-compatible changes

 Any changes to YANG modules that are not defined by Section 3.1.1 as
 being backwards-compatible are classified as "non-backwards-
 compatible" changes.

3.2. non-backwards-compatible extension statement

 The "rev:non-backwards-compatible" extension statement is used to
 indicate YANG module revisions that contain NBC changes.

 If a revision of a YANG module contains changes, relative to the
 preceding revision in the revision history, that do not conform to
 the module update rules defined in Section 3.1.1, then a "rev:non-
 backwards-compatible" extension statement MUST be added as a
 substatement to the "revision" statement.

 Adding, modifying or removing a "rev:non-backwards-compatible"
 extension statement is considered to be a BC change.

3.3. Removing revisions from the revision history

 Authors may wish to remove revision statements from a module or
 submodule. Removal of revision information may be desirable for a
 number of reasons including reducing the size of a large revision
 history, or removing a revision that should no longer be used or
 imported. Removing revision statements is allowed, but can cause
 issues and SHOULD NOT be done without careful analysis of the
 potential impact to users of the module or submodule since it may
 cause loss of visibility of when non-backwards-compatible changes
 were introduced.

 An author MAY remove a contiguous sequence of entries from the end
 (i.e., oldest entries) of the revision history. This is acceptable
 even if the first remaining (oldest) revision entry in the revision
 history contains a rev:non-backwards-compatible substatement.

 An author MAY remove a contiguous sequence of entries in the revision
 history as long as the presence or absence of any existing rev:non-
 backwards-compatible substatements on all remaining entries still
 accurately reflect the compatibility relationship to their preceding
 entries remaining in the revision history.

 The author MUST NOT remove the first (i.e., newest) revision entry in
 the revision history.

 Example revision history:

Wilton, et al. Expires 2 September 2024 [Page 8]

Internet-Draft Updated YANG Module Revision Handling March 2024

 revision 2020-11-11 {
 rev:non-backwards-compatible;
 }

 revision 2020-08-09 {
 rev:non-backwards-compatible;
 }

 revision 2020-06-07 {
 }

 revision 2020-02-10 {
 rev:non-backwards-compatible;
 }

 revision 2019-10-21 {
 }

 revision 2019-03-04 {
 }

 revision 2019-01-02 {
 }

 In the revision history example above (with revision descriptions
 omitted for clarity), removing the revision history entry for
 2020-02-10 would also remove the rev:non-backwards-compatible
 annotation and hence the resulting revision history would incorrectly
 indicate that revision 2020-06-07 is backwards-compatible with
 revisions 2019-01-02 through 2019-10-21 when it is not, and so this
 change cannot be made. Conversely, removing one or more revisions
 out of 2019-03-04, 2019-10-21 and 2020-08-09 from the revision
 history would still retain a consistent revision history, and is
 acceptable, subject to an awareness of the concerns raised in the
 first paragraph of this section.

3.4. Examples for updating the YANG module revision history

 The following diagram, explanation, and module history illustrates
 how a branched revision history for a YANG module could be
 represented chronologically. To aid clarity, it makes use of both
 the "non-backwards-compatible" extension statement, and the "version"
 extension statement defined in [I-D.ietf-netmod-yang-semver]:

 Example YANG module with branched revision history using version
 identifiers defined in [I-D.ietf-netmod-yang-semver].

Wilton, et al. Expires 2 September 2024 [Page 9]

Internet-Draft Updated YANG Module Revision Handling March 2024

 Module revision date Example version identifier
 2019-01-01 <- 1.0.0
 |
 2019-02-01 <- 2.0.0
 | \
 2019-03-01 \ <- 3.0.0
 | \
 | 2019-04-01 <- 2.1.0
 | |
 2019-05-01 | <- 3.1.0
 |
 2019-06-01 <- 2.2.0

 The tree diagram above illustrates how an example module’s revision
 history might evolve, over time. For example, the tree might
 represent the following changes, listed in chronological order from
 the oldest revision to the newest revision:

 Example module, revision 2019-05-01:

Wilton, et al. Expires 2 September 2024 [Page 10]

Internet-Draft Updated YANG Module Revision Handling March 2024

 module example-module {

 namespace "urn:example:module";
 prefix "prefix-name";

 import ietf-yang-revisions { prefix "rev"; }
 import ietf-yang-semver { prefix "ys"; }

 description
 "to be completed";

 revision 2019-05-01 {
 ys:version 3.1.0;
 description "Add new functionality.";
 }

 revision 2019-03-01 {
 ys:version 3.0.0;
 rev:non-backwards-compatible;
 description
 "Add new functionality. Remove some deprecated nodes.";
 }

 revision 2019-02-01 {
 ys:version 2.0.0;
 rev:non-backwards-compatible;
 description "Apply bugfix to pattern statement";
 }

 revision 2019-01-01 {
 ys:version 1.0.0;
 description "Initial revision";
 }

 //YANG module definition starts here
 }

 Example module, revision 2019-06-01:

Wilton, et al. Expires 2 September 2024 [Page 11]

Internet-Draft Updated YANG Module Revision Handling March 2024

 module example-module {

 namespace "urn:example:module";
 prefix "prefix-name";

 import ietf-yang-revisions { prefix "rev"; }
 import ietf-yang-semver { prefix "ys"; }

 description
 "to be completed";

 revision 2019-06-01 {
 ys:version 2.2.0;
 description "Backwards-compatible bugfix to enhancement.";
 }

 revision 2019-04-01 {
 ys:version 2.1.0;
 description "Apply enhancement to older release train.";
 }

 revision 2019-02-01 {
 ys:version 2.0.0;
 rev:non-backwards-compatible;
 description "Apply bugfix to pattern statement";
 }

 revision 2019-01-01 {
 ys:version 1.0.0;
 description "Initial revision";
 }

 //YANG module definition starts here
 }

4. Guidance for revision selection on imports

 [RFC7950] and [RFC6020] allow YANG module "import" statements to
 optionally require the imported module to have a specific revision
 date. In practice, importing a module with an exact revision date
 can be too restrictive because it requires the importing module to be
 updated whenever any change to the imported module occurs, and hence
 section Section 6.1 suggests that authors do not restrict YANG module
 imports to exact revision dates.

 Instead, for conformance purposes (section 5.6 of [RFC7950]), the
 recommended approach for defining the relationship between specific
 YANG module revisions is to specify the relationships outside of the

Wilton, et al. Expires 2 September 2024 [Page 12]

Internet-Draft Updated YANG Module Revision Handling March 2024

 YANG modules, e.g., via YANG library [RFC8525], YANG packages
 [I-D.ietf-netmod-yang-packages], a filesystem directory containing a
 set of consistent YANG module revisions, or a revision control system
 commit label.

4.1. Recommending a minimum revision for module imports

 Although the previous section indicates that the actual relationship
 constraints between different revisions of YANG modules should be
 specified outside of the modules, in some scenarios YANG modules are
 designed to be loosely coupled, and implementors may wish to select
 sets of YANG module revisions that are expected to work together.
 For these cases it can be helpful for a module author to provide
 guidance on a recommended minimum revision that is expected to
 satisfy an YANG import. E.g., the module author may know of a
 dependency on a type or grouping that has been introduced in a
 particular imported YANG module revision. Although there can be no
 guarantee that all derived future revisions from the particular
 imported module will necessarily also be compatible, older revisions
 of the particular imported module are very unlikely to ever be
 compatible.

 This module introduces, for modules with a linear revision history
 that are versioned using revision dates, a new YANG extension
 statement to provide guidance to module implementors on a recommended
 minimum module revision of an imported module that is anticipated to
 be compatible. This statement has been designed to be machine-
 readable so that tools can parse the minimum revision extension
 statement and generate warnings if appropriate, but this extension
 statement does not alter YANG module conformance of valid YANG module
 versions in any way, and specifically it does not alter the behavior
 of the YANG module import statement from that specified in [RFC7950].

 The ietf-revisions module defines the "recommended-min-date"
 extension statement, a substatement to the YANG "import" statement,
 to allow for a "minimum recommended date" to be documented:

 The argument to the "recommended-min-date" extension statement is
 a revision date.

 A particular revision of an imported module adheres to an import’s
 "recommended-min-date" extension statement if the imported
 module’s revision date is equal to or later than the revision date
 argument of the "recommended-min-date" extension statement in the
 importing module.

 Zero or one "recommended-min-date" extension statement is allowed
 for each parent "import" statement.

Wilton, et al. Expires 2 September 2024 [Page 13]

Internet-Draft Updated YANG Module Revision Handling March 2024

 Adding, modifying or removing a "recommended-min-date" extension
 statement is a BC change.

4.1.1. Module import examples

 Consider the example module "example-module" from Section 3.4 that is
 hypothetically available in the following revisions: 2019-01-01,
 2019-02-01, 2019-03-01, 2019-04-01, 2019-05-01 and 2019-06-01. The
 relationship between the revisions is as before:

 Module revision date
 2019-01-01
 |
 2019-02-01
 | \
 2019-03-01 \
 | \
 | 2019-04-01
 | |
 2019-05-01 |
 |
 2019-06-01

4.1.1.1. Example 1

 This example recommends module revisions for import whose revision
 date is or comes after 2019-02-01. E.g., this dependency might be
 used if there was a new container added in revision 2019-02-01 that
 is augmented by the importing module. It includes the following
 revisions: 2019-02-01, 2019-03-01, 2019-04-01, 2019-05-01 and
 2019-06-01.

 import example-module {
 rev:recommended-min-date 2019-02-01;
 }

4.1.1.2. Example 2

 This example recommends module revisions for import whose revision
 date is or comes after 2019-04-01. It includes the following
 revisions: 2019-04-01, 2019-05-01 and 2019-06-01, even though
 revision 2019-05-01 may not contain what is desired from 2019-04-01.
 This shows that "recommended-min-date" is not well suited for a
 branched revision history, and is most helpful when a module is
 restricted to a linear chronological development history.

Wilton, et al. Expires 2 September 2024 [Page 14]

Internet-Draft Updated YANG Module Revision Handling March 2024

 import example-module {
 rev:recommended-min-date 2019-04-01;
 }

5. New ietf-yang-status-conformance YANG module

 This document defines the YANG module, ietf-yang-status-conformance,
 that augments YANG library [RFC8525] with two leafs to indicate how a
 server implements deprecated and obsolete schema nodes.

 The "ietf-yang-status-conformance" YANG module has the following
 structure (using the notation defined in [RFC8340]):

 module: ietf-yang-status-conformance
 augment /yanglib:yang-library/yanglib:schema:
 +--ro deprecated-nodes-implemented? boolean
 +--ro obsolete-nodes-absent? boolean

5.1. Reporting how deprecated and obsolete nodes are handled

 The ietf-yang-status-conformance YANG module augments YANG library
 with two boolean leafs to allow a server to report how it implements
 status "deprecated" and status "obsolete" schema nodes. The leafs
 are:

 deprecated-nodes-implemented: If set to "true", this leaf indicates
 that all schema nodes with a status "deprecated" are implemented
 equivalently as if they had status "current"; otherwise deviations
 MUST be used by the server to explicitly remove "deprecated" nodes
 from the schema. If this leaf is set to "false" or absent, then
 the behavior is unspecified.

 obsolete-nodes-absent: If set to "true", this leaf indicates that
 the server does not implement any status "obsolete" schema nodes.
 If this leaf is set to "false" or absent, then the behaviour is
 unspecified.

 Servers SHOULD set both the "deprecated-nodes-implemented" and
 "obsolete-nodes-absent" leafs to "true", which allows clients to
 determine the exact schema used by the server.

Wilton, et al. Expires 2 September 2024 [Page 15]

Internet-Draft Updated YANG Module Revision Handling March 2024

 If a server does not set the "deprecated-nodes-implemented" leaf to
 "true", then clients MUST NOT rely solely on the "rev:non-backwards-
 compatible" statements to determine whether two module revisions are
 backwards-compatible, and MUST also consider whether the status of
 any nodes has changed to "deprecated" and whether those nodes are
 implemented by the server.

6. Guidelines for using the YANG module update rules

 The following text updates section 4.7 of [RFC8407] to revise the
 guidelines for updating YANG modules.

6.1. Guidelines for YANG module authors

 All IETF YANG modules MUST conform to this specification. In
 particular, sections: Section 3, Section 4, and the guidelines
 documented in this section.

 NBC changes to YANG modules may cause problems to clients, who are
 consumers of YANG models, and hence YANG module authors SHOULD
 minimize NBC changes and keep changes BC whenever possible.

 When NBC changes are introduced, consideration should be given to the
 impact on clients and YANG module authors SHOULD try to mitigate that
 impact.

 A "rev:non-backwards-compatible" statement MUST be added if there are
 NBC changes relative to the previous revision.

 Removing old revision statements from a module’s revision history can
 cause a loss of visibility of when non-backwards-compatible changes
 were made, and hence it is RECOMMENDED to retain them. An
 alternative solution, if the revision section is too long, would be
 to remove, or curtail, the older description statements associated
 with the previous revisions.

 In cases where a revision dependency is helpful for a module import,
 the "rev:recommended-min-date" extension SHOULD be used in preference
 to the "revision-date" statement, which causes overly strict import
 dependencies and SHOULD NOT be used.

 A module that includes submodules SHOULD use the "revision-date"
 statement to include specific submodule revisions. The revision of
 the including module MUST be updated when any included submodule has
 changed.

Wilton, et al. Expires 2 September 2024 [Page 16]

Internet-Draft Updated YANG Module Revision Handling March 2024

 In some cases a module or submodule revision that is not strictly NBC
 by the definition in Section 3.1.2 of this specification may include
 the "non-backwards-compatible" statement. Here is an example when
 adding the statement may be desirable:

 * A "config false" leaf had its value space expanded (for example, a
 range was increased, or additional enum values were added) and the
 author or server implementor feels there is a significant
 compatibility impact for clients and users of the module or
 submodule

6.1.1. Making non-backwards-compatible changes to a YANG module

 There are various valid situations where a YANG module has to be
 modified in an NBC way. Here are some guidelines on how non-
 backwards-compatible changes can be made incrementally, with the
 assumption that deprecated nodes are implemented by the server, and
 obsolete nodes are not:

 1. The changes should be made gradually, e.g., a data node’s status
 SHOULD NOT be changed directly from "current" to "obsolete" (see
 Section 4.7 of [RFC8407]), instead the status SHOULD first be
 marked "deprecated". At some point in the future, when support
 is removed for the data node, there are two options. The first,
 and preferred, option is to keep the data node definition in the
 model and change the status to obsolete. The second option is
 to simply remove the data node from the model, but this has the
 risk of breaking modules which import the modified module, and
 the removed identifier may be accidentally reused in a future
 revision.

 2. For deprecated data nodes the "description" statement SHOULD also
 indicate until when support for the node is guaranteed (if
 known). If there is a replacement data node, rpc, action or
 notification for the deprecated node, this SHOULD be stated in
 the "description". The reason for deprecating the node can also
 be included in the "description" if it is deemed to be of
 potential interest to the user.

 3. For obsolete data nodes, it is RECOMMENDED to keep the above
 information, from when the node had status "deprecated", which is
 still relevant.

Wilton, et al. Expires 2 September 2024 [Page 17]

Internet-Draft Updated YANG Module Revision Handling March 2024

 4. When obsoleting or deprecating data nodes, the "deprecated" or
 "obsolete" status SHOULD be applied at the highest possible level
 in the data tree. For clarity, the "status" statement SHOULD
 also be applied to all descendent data nodes, but the additional
 status related information does not need to be repeated if it
 does not introduce any additional information.

 5. NBC changes which can break imports SHOULD be avoided because of
 the impact on the importing module. The importing modules could
 get broken, e.g., if an augmented node in the importing module
 has been removed from the imported module. Alternatively, the
 schema of the importing modules could undergo an NBC change due
 to the NBC change in the imported module, e.g., if a node in a
 grouping has been removed. As described in Appendix B.1, instead
 of removing a node, that node SHOULD first be deprecated and then
 obsoleted.

 See Appendix B for examples on how NBC changes can be made.

6.2. Versioning Considerations for Clients

 Guidelines for clients of modules using the new module revision
 update procedure:

 * Clients SHOULD be liberal when processing data received from a
 server. For example, the server may have increased the range of
 an operational node causing the client to receive a value which is
 outside the range of the YANG model revision it was coded against.

 * Clients SHOULD monitor changes to published YANG modules through
 their revision history, and use appropriate tooling to understand
 the specific changes between module revision. In particular,
 clients SHOULD NOT migrate to NBC revisions of a module without
 understanding any potential impact of the specific NBC changes.

 * Clients SHOULD plan to make changes to match published status
 changes. When a node’s status changes from "current" to
 "deprecated", clients SHOULD plan to stop using that node in a
 timely fashion. When a node’s status changes to "obsolete",
 clients MUST stop using that node.

7. Module Versioning Extension YANG Modules

 YANG module with extension statements for annotating NBC changes and
 importing by revision.

Wilton, et al. Expires 2 September 2024 [Page 18]

Internet-Draft Updated YANG Module Revision Handling March 2024

 <CODE BEGINS> file "ietf-yang-revisions@2024-02-19.yang"
 module ietf-yang-revisions {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-revisions";
 prefix rev;

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Joe Clarke
 <mailto:jclarke@cisco.com>

 Author: Reshad Rahman
 <mailto:reshad@yahoo.com>

 Author: Robert Wilton
 <mailto:rwilton@cisco.com>

 Author: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>

 Author: Jason Sterne
 <mailto:jason.sterne@nokia.com>";
 description
 "This YANG 1.1 module contains definitions and extensions to
 support updated YANG revision handling.

 Copyright (c) 2024 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

Wilton, et al. Expires 2 September 2024 [Page 19]

Internet-Draft Updated YANG Module Revision Handling March 2024

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX (inc above) with actual RFC number and
 // remove this note.

 revision 2024-02-19 {
 description
 "Initial version.";
 reference
 "XXXX: Updated YANG Module Revision Handling";
 }

 typedef revision-date {
 type string {
 pattern ’[0-9]{4}-(1[0-2]|0[1-9])-(0[1-9]|[1-2][0-9]|3[0-1])’;
 }
 description
 "A date associated with a YANG revision.

 Matches dates formatted as YYYY-MM-DD.";
 reference
 "RFC 7950: The YANG 1.1 Data Modeling Language";
 }

 extension non-backwards-compatible {
 description
 "This statement is used to indicate YANG module revisions that
 contain non-backwards-compatible changes.

 The statement MUST only be a substatement of the ’revision’
 statement. Zero or one ’non-backwards-compatible’ statements
 per parent statement is allowed. No substatements for this
 extension have been standardized.

 If a revision of a YANG module contains changes, relative to
 the preceding revision in the revision history, that do not
 conform to the backwards-compatible module update rules
 defined in RFC-XXX, then the ’non-backwards-compatible’
 statement MUST be added as a substatement to the revision
 statement.

 Conversely, if a revision does not contain a
 ’non-backwards-compatible’ statement then all changes,
 relative to the preceding revision in the revision history,
 MUST be backwards-compatible.

 A new module revision that only contains changes that are
 backwards-compatible SHOULD NOT include the

Wilton, et al. Expires 2 September 2024 [Page 20]

Internet-Draft Updated YANG Module Revision Handling March 2024

 ’non-backwards-compatible’ statement. An example of when an
 author might add the ’non-backwards-compatible’ statement is
 if they believe a change could negatively impact clients even
 though the backwards compatibility rules defined in RFC-XXXX
 classify it as a backwards-compatible change.

 Add, removing, or changing a ’non-backwards-compatible’
 statement is a backwards-compatible version change.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 3.2,
 non-backwards-compatible revision extension statement";
 }

 extension recommended-min-date {
 argument revision-date;
 description
 "Recommends the revision of the module that may be imported to
 one whose revision date matches or is after the specified
 revision-date.

 The argument value MUST conform to the ’revision-date’ defined
 type.

 The statement MUST only be a substatement of the import
 statement. Zero, one or more ’recommended-min-date’
 statements per parent statement are allowed. No substatements
 for this extension have been standardized.

 Zero or one ’recommended-min-date’ extension statement is
 allowed for each parent ’import’ statement.

 A particular revision of an imported module adheres to an
 import’s ’recommended-min-date’ extension statement if the
 imported module’s revision date is equal to or later than
 the revision date argument of the ’recommended-min-date’
 extension statement in the importing module.

 Adding, removing or updating a ’recommended-min-date’
 statement to an import is a backwards-compatible change.";
 reference
 "XXXX: Updated YANG Module Revision Handling; Section 4,
 Recommending a minimum revision for module imports";
 }
 }
 <CODE ENDS>

 YANG module for status conformance

Wilton, et al. Expires 2 September 2024 [Page 21]

Internet-Draft Updated YANG Module Revision Handling March 2024

 <CODE BEGINS> file "ietf-yang-status-conformance@2024-02-14.yang"
 module ietf-yang-status-conformance {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-yang-status-conformance";
 prefix ys-conf;

 import ietf-yang-library {
 prefix "yanglib";
 reference
 "RFC 8525: YANG Library";
 }
 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Joe Clarke
 <mailto:jclarke@cisco.com>

 Author: Reshad Rahman
 <mailto:reshad@yahoo.com>

 Author: Robert Wilton
 <mailto:rwilton@cisco.com>

 Author: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>

 Author: Jason Sterne
 <mailto:jason.sterne@nokia.com>";
 description
 "This module contains augmentations to YANG Library to provide an
 indication of how deprecated and obsolete nodes are handled by
 the server.

 Copyright (c) 2024 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see

Wilton, et al. Expires 2 September 2024 [Page 22]

Internet-Draft Updated YANG Module Revision Handling March 2024

 the RFC itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX (including in the imports above) with
 // actual RFC number and remove this note.

 revision 2024-02-14 {
 description
 "Initial revision";
 reference
 "XXXX: Updated YANG Module Revision Handling";
 }

 augment "/yanglib:yang-library/yanglib:schema" {
 description
 "Augmentations to the ietf-yang-library module to indicate how
 deprecated and obsoleted nodes are handled by the server.";
 leaf deprecated-nodes-implemented {
 type boolean;
 description
 "If set to true, this leaf indicates that all schema nodes
 with a status ’deprecated’ are implemented equivalently as
 if they had status ’current’; otherwise deviations MUST be
 used to explicitly remove deprecated nodes from the schema.
 If this leaf is absent or set to false, then the behavior is
 unspecified.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.1, Reporting how deprecated and obsolete nodes
 are handled";
 }
 leaf obsolete-nodes-absent {
 type boolean;
 description
 "If set to true, this leaf indicates that the server does not
 implement any status ’obsolete’ schema nodes. If this leaf
 is absent or set to false, then the behaviour is
 unspecified.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.1, Reporting how deprecated and obsolete nodes

Wilton, et al. Expires 2 September 2024 [Page 23]

Internet-Draft Updated YANG Module Revision Handling March 2024

 are handled";
 }
 }
 }
 <CODE ENDS>

8. Security considerations

8.1. Security considerations for module revisions

 As discussed in the introduction of this document, YANG modules
 occasionally undergo changes that are not backwards compatible. This
 occurs in both standards and vendor YANG modules despite the
 prohibitions in RFC 7950. RFC 7950 also allows nodes to change to
 status ’obsolete’ which can change behavior and compatibility for a
 client.

 The fact that YANG modules change in a non-backwards-compatible
 manner may have security implications. Such changes should be
 carefully considered, including the scenarios described below. The
 rev:non-backwards-compatible extension statement introduced in this
 document provides an alert that the module or submodule may contain
 changes that impact users and need to be examined more closely for
 both compatibility and potential security implications. Flagging the
 change reduces the risk of introducing silent exploitable
 vulnerabilities.

 When a module undergoes a non-backwards-compatible change, a server
 may implement different semantics for a given leaf than a client
 using an older version of the module is expecting. If the particular
 leaf controls any security functions of the device, or is related to
 parts of the configuration or state that are sensitive from a
 security point of view, then the difference in behavior between the
 old and new revisions needs to be considered carefully. In
 particular, changes to the default of the leaf should be examined.

 Implementors and users should also consider impact to data node
 access control rules (e.g. The Network Configuration Access Control
 Model (NACM) [RFC8341]) in the face of non-backwards-compatible
 changes. Access rules may need to be adjusted when a new module
 revision is introduced that contains a non-backwards-compatible
 change.

 If the changes to a module or submodule have security implications,
 it is recommended to highlight those implications in the description
 of the revision statement.

Wilton, et al. Expires 2 September 2024 [Page 24]

Internet-Draft Updated YANG Module Revision Handling March 2024

8.2. Security considerations for the modules defined in this document

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The NETCONF access control model [RFC8341] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

 This document does not define any new protocol or data nodes that are
 writable.

 This document updates YANG Library [RFC8525] with augmentations to
 include two boolean leafs that indicate whether status deprecated and
 status obsolete schema nodes are implemented by the server. These
 read-only augmentations do not add any new security considerations
 beyond those already present in [RFC8525].

9. IANA Considerations

9.1. YANG Module Registrations

 This document requests IANA to registers a URI in the "IETF XML
 Registry" [RFC3688]. Following the format in RFC 3688, the following
 registrations are requested.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-revisions
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-status-conformance
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 The following YANG module is requested to be registred in the "IANA
 Module Names" [RFC6020]. Following the format in RFC 6020, the
 following registrations are requested:

 The ietf-yang-revisions module:

 Name: ietf-yang-revisions

Wilton, et al. Expires 2 September 2024 [Page 25]

Internet-Draft Updated YANG Module Revision Handling March 2024

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-revisions

 Prefix: rev

 Reference: [RFCXXXX]

 The ietf-yang-status-conformance module:

 Name: ietf-yang-status-conformance

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-status-
 conformance

 Prefix: ys-conf

 Reference: [RFCXXXX]

9.2. Guidance for versioning in IANA maintained YANG modules

 Note for IANA (to be removed by the RFC editor): Please check that
 the registries and IANA YANG modules are referenced in the
 appropriate way.

 IANA is responsible for maintaining and versioning YANG modules that
 are derived from other IANA registries. For example,
 "iana-if-type.yang" [IfTypeYang] is derived from the "Interface Types
 (ifType) IANA registry" [IfTypesReg], and "iana-routing-types.yang"
 [RoutingTypesYang] is derived from the "Address Family Numbers"
 [AddrFamilyReg] and "Subsequent Address Family Identifiers (SAFI)
 Parameters" [SAFIReg] IANA registries.

 Normally, updates to the registries cause any derived YANG modules to
 be updated in a backwards-compatible way, but there are some cases
 where the registry updates can cause non-backward-compatible updates
 to the derived YANG module. An example of such an update is the
 2020-12-31 revision of iana-routing-types.yang
 [RoutingTypesDecRevision], where the enum name for two SAFI values
 was changed.

 In all cases, IANA MUST follow the versioning guidance specified in
 Section 3.1, and MUST include a "rev:non-backwards-compatible"
 substatement to the latest revision statement whenever an IANA
 maintained module is updated in a non-backwards-compatible way, as
 described in Section 3.2.

Wilton, et al. Expires 2 September 2024 [Page 26]

Internet-Draft Updated YANG Module Revision Handling March 2024

 Note: For published IANA maintained YANG modules that contain non-
 backwards-compatible changes between revisions, a new revision should
 be published with the "rev:non-backwards-compatible" substatement
 retrospectively added to any revisions containing non-backwards-
 compatible changes.

 Non-normative examples of updates to enumeration types in IANA
 maintained modules that would be classified as non-backwards-
 compatible changes are: Changing the status of an enumeration typedef
 to obsolete, changing the status of an enum entry to obsolete,
 removing an enum entry, changing the identifier of an enum entry, or
 changing the described meaning of an enum entry.

 Non-normative examples of updates to enumeration types in IANA
 maintained modules that would be classified as backwards-compatible
 changes are: Adding a new enum entry to the end of the enumeration,
 changing the status or an enum entry to deprecated, or improving the
 description of an enumeration that does not change its defined
 meaning.

 Non-normative examples of updates to identity types in IANA
 maintained modules that would be classified as non-backwards-
 compatible changes are: Changing the status of an identity to
 obsolete, removing an identity, renaming an identity, or changing the
 described meaning of an identity.

 Non-normative examples of updates to identity types in IANA
 maintained modules that would be classified as backwards-compatible
 changes are: Adding a new identity, changing the status or an
 identity to deprecated, or improving the description of an identity
 that does not change its defined meaning.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

Wilton, et al. Expires 2 September 2024 [Page 27]

Internet-Draft Updated YANG Module Revision Handling March 2024

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", RFC 8525,
 DOI 10.17487/RFC8525, March 2019,
 <https://www.rfc-editor.org/info/rfc8525>.

10.2. Informative References

Wilton, et al. Expires 2 September 2024 [Page 28]

Internet-Draft Updated YANG Module Revision Handling March 2024

 [AddrFamilyReg]
 "Address Family Numbers IANA Registry",
 <https://www.iana.org/assignments/address-family-numbers/
 address-family-numbers.xhtml>.

 [I-D.clacla-netmod-yang-model-update]
 Claise, B., Clarke, J., Lengyel, B., and K. D’Souza, "New
 YANG Module Update Procedure", Work in Progress, Internet-
 Draft, draft-clacla-netmod-yang-model-update-06, 2 July
 2018, <https://datatracker.ietf.org/doc/html/draft-clacla-
 netmod-yang-model-update-06>.

 [I-D.ietf-netmod-yang-packages]
 Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,
 "YANG Packages", Work in Progress, Internet-Draft, draft-
 ietf-netmod-yang-packages-03, 4 March 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
 yang-packages-03>.

 [I-D.ietf-netmod-yang-schema-comparison]
 Andersson, P. and R. Wilton, "YANG Schema Comparison",
 Work in Progress, Internet-Draft, draft-ietf-netmod-yang-
 schema-comparison-02, 14 March 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
 yang-schema-comparison-02>.

 [I-D.ietf-netmod-yang-semver]
 Clarke, J., Wilton, R., Rahman, R., Lengyel, B., Sterne,
 J., and B. Claise, "YANG Semantic Versioning", Work in
 Progress, Internet-Draft, draft-ietf-netmod-yang-semver-
 12, 2 October 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
 yang-semver-12>.

 [I-D.ietf-netmod-yang-ver-selection]
 Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,
 "YANG Schema Selection", Work in Progress, Internet-Draft,
 draft-ietf-netmod-yang-ver-selection-00, 17 March 2020,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
 yang-ver-selection-00>.

 [I-D.ietf-netmod-yang-versioning-reqs]
 Clarke, J., "YANG Module Versioning Requirements", Work in
 Progress, Internet-Draft, draft-ietf-netmod-yang-
 versioning-reqs-09, 14 January 2024,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
 yang-versioning-reqs-09>.

Wilton, et al. Expires 2 September 2024 [Page 29]

Internet-Draft Updated YANG Module Revision Handling March 2024

 [IfTypesReg]
 "Interface Types (ifType) IANA Registry",
 <https://www.iana.org/assignments/smi-numbers/smi-
 numbers.xhtml#smi-numbers-5>.

 [IfTypeYang]
 "iana-if-type YANG Module",
 <https://www.iana.org/assignments/iana-if-type/iana-if-
 type.xhtml>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RoutingTypesDecRevision]
 "2020-12-31 revision of iana-routing-types.yang",
 <https://www.iana.org/assignments/yang-parameters/iana-
 routing-types@2020-12-31.yang>.

 [RoutingTypesYang]
 "iana-routing-types YANG Module",
 <https://www.iana.org/assignments/iana-routing-types/iana-
 routing-types.xhtml>.

 [SAFIReg] "Subsequent Address Family Identifiers (SAFI) Parameters
 IANA Registry", <https://www.iana.org/assignments/safi-
 namespace/safi-namespace.xhtml>.

Appendix A. Examples of changes that are NBC

 Examples of NBC changes include:

 * Deleting a data node, or changing it to status obsolete.

 * Changing the name, type, or units of a data node.

 * Modifying the description in a way that changes the semantic
 meaning of the data node.

 * Any changes that remove any previously allowed values from the
 allowed value set of the data node, either through changes in the
 type definition, or the addition or changes to "must" statements,
 or changes in the description.

 * Adding or modifying "when" statements that reduce when the data
 node is available in the schema.

 * Making the statement conditional on if-feature.

Wilton, et al. Expires 2 September 2024 [Page 30]

Internet-Draft Updated YANG Module Revision Handling March 2024

Appendix B. Examples of applying the NBC change guidelines

 The following sections give steps that could be taken for making NBC
 changes to a YANG module or submodule using the incremental approach
 described in section Section 6.1.1.

 The examples are all for "config true" nodes.

B.1. Removing a data node

 Removing a leaf or container from the data tree, e.g., because
 support for the corresponding feature is being removed:

 1. The schema node’s status is changed to "deprecated" and the node
 is supported for some period of time (e.g. one year). This is a
 BC change.

 2. When the schema node is not supported anymore, its status is
 changed to "obsolete" and the "description" updated. This is an
 NBC change.

B.2. Changing the type of a leaf node

 Changing the type of a leaf node. e.g., a "vpn-id" node of type
 integer being changed to a string:

 1. The status of schema node "vpn-id" is changed to "deprecated" and
 the node is supported for some period of time (e.g. one year).
 This is a BC change. The description is updated to indicate that
 vpn-name is replacing this node.

 2. A new schema node, e.g., "vpn-name", of type string is added to
 the same location as the existing node "vpn-id". This new node
 has status "current" and its description explains that it is
 replacing node "vpn-id".

 3. During the period of time when both schema nodes are supported,
 the interactions between the two nodes is outside the scope of
 this document and will vary on a case by case basis. One
 possible option is to have the server prevent the new node from
 being set if the old node is already set (and vice-versa). The
 new node could have a "when" statement added to it to achieve
 this. The old node, however, must not have a "when" statement
 added, or an existing "when" modified to be more restrictive,
 since this would be an NBC change. In any case, the server could
 reject the old node from being set if the new node is already
 set.

Wilton, et al. Expires 2 September 2024 [Page 31]

Internet-Draft Updated YANG Module Revision Handling March 2024

 4. When the schema node "vpn-id" is not supported anymore, its
 status is changed to "obsolete" and the "description" is updated.
 This is an NBC change.

B.3. Reducing the range of a leaf node

 Reducing the range of values of a leaf-node, e.g., consider a "vpn-
 id" schema node of type uint32 being changed from range 1..5000 to
 range 1..2000:

 1. If all values which are being removed were never supported, e.g.,
 if a vpn-id of 2001 or higher was never accepted, this is a BC
 change for the functionality (no functionality change). Even if
 it is an NBC change for the YANG model, there should be no impact
 for clients using that YANG model.

 2. If one or more values being removed was previously supported,
 e.g., if a vpn-id of 3333 was accepted previously, this is an NBC
 change for the YANG model. Clients using the old YANG model will
 be impacted, so a change of this nature should be done carefully,
 e.g., by using the steps described in Appendix B.2

B.4. Changing the key of a list

 Changing the key of a list has a big impact to the client. For
 example, consider a "sessions" list which has a key "interface" and
 there is a need to change the key to "dest-address". Such a change
 can be done in steps:

 1. The status of list "sessions" is changed to "deprecated" and the
 list is supported for some period of time (e.g. one year). This
 is a BC change. The description is updated to indicate the new
 list that is replacing this list.

 2. A new list is created in the same location with the same
 descendant schema nodes but with "dest-address" as key. Finding
 an appropriate name for the new list can be difficult. In this
 case the new list is called "sessions-address", has status
 "current" and its description should explain that it is replacing
 list "session".

 3. During the period of time when both lists are supported, the
 interactions between the two lists is outside the scope of this
 document and will vary on a case by case basis. One possible
 option is to have the server prevent entries in the new list from
 being created if the old list already has entries (and vice-
 versa).

Wilton, et al. Expires 2 September 2024 [Page 32]

Internet-Draft Updated YANG Module Revision Handling March 2024

 4. When list "sessions" is not available anymore, its status is
 changed to "obsolete" and the "description" is updated. This is
 an NBC change.

B.5. Renaming a node

 A leaf or container schema node may be renamed, either due to a
 spelling error in the previous name or because of a better name. For
 example a node "ip-adress" could be renamed to "ip-address":

 1. The status of the existing node "ip-adress" is changed to
 "deprecated" and is supported for some period of time (e.g. one
 year). This is a BC change. The description is updated to
 indicate the node that is replacing this node.

 2. The new schema node "ip-address" is added to the same location as
 the existing node "ip-adress". This new node has status
 "current" and its description should explain that it is replacing
 node "ip-adress".

 3. During the period of time when both nodes are available, the
 interactions between the two nodes is outside the scope of this
 document and will vary on a case by case basis. One possible
 option is to have the server prevent the new node from being set
 if the old node is already set (and vice-versa). The new node
 could have a "when" statement added to it to achieve this. The
 old node, however, must not have a "when" statement added, or an
 existing "when" modified to be more restrictive, since this would
 be an NBC change. In any case, the server could reject the old
 node from being set if the new node is already set.

 4. When node "ip-adress" is not available anymore, its status is
 changed to "obsolete" and the "description" is updated. This is
 an NBC change.

Contributors

 The following people made substantial contributions to this document:

 Bo Wu
 lana.wubo@huawei.com

 Jan Lindblad
 jlindbla@cisco.com

Wilton, et al. Expires 2 September 2024 [Page 33]

Internet-Draft Updated YANG Module Revision Handling March 2024

Acknowledgments

 This document grew out of the YANG module versioning design team that
 started after IETF 101. The authors, contributors and the following
 individuals are (or have been) members of the design team and have
 worked on the YANG versioning project:

 Benoit Claise
 benoit.claise@huawei.com

 Ebben Aries
 exa@juniper.net

 Juergen Schoenwaelder
 j.shoenwaelder@jacobs-university.de

 Mahesh Jethanandani
 mjethanandani@gmail.com

 Michael (Wangzitao)
 wangzitao@huawei.com

 Per Andersson
 perander@cisco.com

 Qin Wu
 bill.wu@huawei.com

 The initial revision of this document was refactored and built upon
 [I-D.clacla-netmod-yang-model-update]. We would like to thank Kevin
 D’Souza and Benoit Claise for their initial work in this problem
 space.

 Discussions on the use of Semver for YANG versioning has been held
 with authors of the OpenConfig YANG models. We would like to thank
 both Anees Shaikh and Rob Shakir for their input into this problem
 space.

 We would also like to thank Lou Berger, Andy Bierman, Martin
 Bjorklund, Italo Busi, Tom Hill, Scott Mansfield, and Kent Watsen for
 their contributions and review comments.

Authors’ Addresses

 Robert Wilton (editor)
 Cisco Systems, Inc.

Wilton, et al. Expires 2 September 2024 [Page 34]

Internet-Draft Updated YANG Module Revision Handling March 2024

 Email: rwilton@cisco.com

 Reshad Rahman (editor)
 Equinix
 Email: reshad@yahoo.com

 Balazs Lengyel (editor)
 Ericsson
 Email: balazs.lengyel@ericsson.com

 Joe Clarke
 Cisco Systems, Inc.
 Email: jclarke@cisco.com

 Jason Sterne
 Nokia
 Email: jason.sterne@nokia.com

Wilton, et al. Expires 2 September 2024 [Page 35]

Network Working Group R. Wilton, Ed.
Internet-Draft R. Rahman
Intended status: Standards Track J. Clarke
Expires: 5 September 2022 Cisco Systems, Inc.
 J. Sterne
 Nokia
 B. Wu, Ed.
 Huawei
 4 March 2022

 YANG Packages
 draft-ietf-netmod-yang-packages-03

Abstract

 This document defines YANG packages; a versioned organizational
 structure used to manage schema and conformance of YANG modules as a
 cohesive set instead of individually.

 It describes how packages: are represented on a server, can be
 defined in offline YANG instance data files, and can be used to
 define the content schema associated with YANG instance data files.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 5 September 2022.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Wilton, et al. Expires 5 September 2022 [Page 1]

Internet-Draft YANG Packages March 2022

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Terminology and Conventions 3
 2. Introduction . 4
 3. Background on YANG packages 4
 4. Objectives . 5
 5. YANG Package Definition 6
 5.1. Package definition rules 7
 5.2. Package versioning 8
 5.2.1. Updating a package with a new version 8
 5.2.1.1. Non-Backwards-compatible changes 8
 5.2.1.2. Backwards-compatible changes 8
 5.2.1.3. Editorial changes 9
 5.2.2. YANG Semantic Versioning for packages 9
 5.3. Package conformance 10
 5.3.1. Use of YANG semantic versioning 10
 5.3.2. The relationship between packages and datastores . . 11
 5.4. Schema referential completeness 12
 5.5. Package name scoping and uniqueness 13
 5.5.1. Globally scoped packages 13
 5.5.2. Server scoped packages 13
 5.6. Submodules packages considerations 13
 5.7. Package tags . 14
 5.8. YANG Package Usage Guidance 14
 5.8.1. Use of deviations in YANG packages 14
 5.8.2. Use of features in YANG modules and YANG packages . . 15
 5.9. YANG package core definition 15
 6. Package Instance Data Files 17
 7. Package Definitions on a Server 18
 7.1. Package List . 18
 7.2. Tree diagram . 18
 8. YANG Library Package Bindings 19
 9. YANG packages as schema for YANG instance data document . . . 19
 10. YANG Modules . 20
 11. Security Considerations 37
 12. IANA Considerations . 38
 13. Open Questions/Issues . 39
 14. Acknowledgements . 40
 15. References . 40

Wilton, et al. Expires 5 September 2022 [Page 2]

Internet-Draft YANG Packages March 2022

 15.1. Normative References 40
 15.2. Informative References 42
 Appendix A. Examples . 43
 A.1. Example IETF Network Device YANG package 43
 A.2. Example IETF Basic Routing YANG package 45
 A.3. Package import conflict resolution example 48
 Appendix B. Possible alternative solutions 51
 B.1. Using module tags . 52
 B.2. Using YANG library 52
 Authors’ Addresses . 53

1. Terminology and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document uses terminology introduced in the YANG versioning
 requirements draft [I-D.ietf-netmod-yang-versioning-reqs].

 This document also makes of the following terminology introduced in
 the Network Management Datastore Architecture [RFC8342]:

 * datastore schema

 This document also makes of the following terminology introduced in
 the YANG 1.1 Data Modeling Language [RFC7950]:

 * data node

 * schema node

 In addition, this document defines the following terminology:

 * YANG package: a versioned organizational structure used to manage
 a set of YANG modules that collectively define a package schema.
 YANG packages are defined in Section 5.

 * package schema: The combined set of schema nodes defined by a YANG
 package. Package schema can be used to define datastore schema.

 * backwards-compatible (BC) change: When used in the context of a
 YANG module, it follows the definition in Section 3.1.1 of
 [I-D.ietf-netmod-yang-module-versioning]. When used in the
 context of a YANG package, it follows the definition in
 Section 5.2.1.2.

Wilton, et al. Expires 5 September 2022 [Page 3]

Internet-Draft YANG Packages March 2022

 * non-backwards-compatible (NBC) change: When used in the context of
 a YANG module, it follows the definition in Section 3.1.2 of
 [I-D.ietf-netmod-yang-module-versioning]. When used in the
 context of a YANG package, it follows the definition in
 Section 5.2.1.2.

 * editorial change: When used in the context of a YANG module, it
 follows the definition of an ’editorial change’ in 3.2 of
 [I-D.ietf-netmod-yang-module-versioning]. When used in the
 context of a YANG package, it follows the definition in
 Section 5.2.1.3.

2. Introduction

 This document defines and describes the YANG [RFC7950] constructs
 that are used to define and use YANG packages.

 A YANG package is a versioned organizational structure used to manage
 a set of YANG modules that collectively define a package schema. For
 example, a YANG package could contain the set of YANG modules
 required to implement an L2VPN service on a network device.

 Non-normative examples of YANG packages are provided in the
 appendices.

3. Background on YANG packages

 It has long been acknowledged within the YANG community that network
 management using YANG requires a unit of organization and conformance
 that is broader in scope than individual YANG modules.

 ’The YANG Package Statement’ [I-D.bierman-netmod-yang-package]
 proposed a YANG package mechanism based on new YANG language
 statements, where a YANG package is defined in a file similar to how
 YANG modules are defined, and would require enhancements to YANG
 compilers to understand the new statements used to define packages.

 OpenConfig [openconfigsemver] describes an approach to versioning
 ’bundle releases’ based on git tags. I.e. a set of modules, at
 particular versions, can be marked with the same release tag to
 indicate that they are known to interoperate together.

 The NETMOD WG in general, and the YANG versioning design team in
 particular, are exploring solutions [I-D.ietf-netmod-yang-solutions]
 to the YANG versioning requirements,
 [I-D.ietf-netmod-yang-versioning-reqs]. Solutions to the versioning
 requirements can be split into several distinct areas.
 [I-D.ietf-netmod-yang-module-versioning] is focused on YANG

Wilton, et al. Expires 5 September 2022 [Page 4]

Internet-Draft YANG Packages March 2022

 versioning scoped to individual modules. The overall solution must
 also consider YANG versioning and conformance scoped to sets of
 modules. YANG packages provide part of the solution for versioning
 sets of modules.

4. Objectives

 The main goals of YANG package definitions include, but are not
 restricted to:

 * To provide an alternative, simplified, YANG conformance mechanism.
 Rather than conformance being performed against a set of
 individual YANG module revisions, features, and deviations,
 conformance can be more simply stated in terms of YANG packages,
 with a set of modifications (e.g. additional modules, deviations,
 or features).

 * To allow datastore schema to be specified in a concise way rather
 than having each server explicitly list all modules, revisions,
 and features. YANG package definitions can be defined in
 documents that are available offline, and accessible via a URL,
 rather than requiring explicit lists of modules to be shared
 between client and server. Hence, a YANG package must contain
 sufficient information to allow a client or server to precisely
 construct the schema associated with the package.

 * To define a mainly linear versioned history of sets of modules
 versions that are known to work together. I.e. to help mitigate
 the problem where a client must manage devices from multiple
 vendors, and vendor A implements version 1.0.0 of module foo and
 version 2.0.0 of module bar, and vendor B implements version 2.0.0
 of module foo and version 1.0.0 of module bar. For a client,
 trying to interoperate with multiple vendors, and many YANG
 modules, finding a consistent lowest common denominator set of
 YANG module versions may be difficult, if not impossible.

 Protocol mechanisms of how clients can negotiate which packages or
 package versions are to be used for NETCONF/RESTCONF communications
 are outside the scope of this document, and are defined in
 [I-D.ietf-netmod-yang-ver-selection].

 Finally, the package definitions proposed by this document are
 intended to be relatively basic in their definition and the
 functionality that they support. As industry gains experience using
 YANG packages, the standard YANG mechanisms of updating, or
 augmenting YANG modules could also be used to extend the
 functionality supported by YANG packages, if required.

Wilton, et al. Expires 5 September 2022 [Page 5]

Internet-Draft YANG Packages March 2022

5. YANG Package Definition

 This document specifies an approach to defining YANG packages that is
 different to either of the approaches described in the background.

 A YANG package is a versioned organizational structure used to manage
 a set of YANG modules that collectively define a package schema.

 Each YANG package has a name that SHOULD end with the suffix "-pkg".
 Package names are normally expected to be globally unique, but in
 some cases the package name may be locally scoped to a server or
 device, as described in Section 5.5.

 YANG packages are versioned using the same approaches described in
 [I-D.ietf-netmod-yang-module-versioning] and
 [I-D.ietf-netmod-yang-semver]. This is described in further detail
 in Section 5.2.

 Each YANG package version, defines:

 * some metadata about the package, e.g., description, tags, scoping,
 referential completeness, location information.

 * a set of YANG modules, at particular revisions, that are
 implemented by servers that implement the package. The modules
 may contain deviations.

 * a set of import-only YANG modules, at particular revisions, that
 are used ’import-only’ by the servers that implement the package.

 * a set of included YANG packages, at particular revisions, that are
 also implemented by servers that implement the package.

 * a set of YANG module features that must be supported by servers
 that implement the package.

 The structure for YANG package definitions uses existing YANG
 language statements, YANG Data Structure Extensions
 [I-D.ietf-netmod-yang-data-ext], and YANG Instance Data File Format
 [I-D.ietf-netmod-yang-instance-file-format].

 YANG package definitions are available offline in YANG instance data
 files. Client applications can be designed to support particular
 package versions that they expect to interoperate with.

 YANG package definitions are available from the server via
 augmentations to YANG Library [RFC8525]. Rather than client
 applications downloading the entire contents of YANG library to

Wilton, et al. Expires 5 September 2022 [Page 6]

Internet-Draft YANG Packages March 2022

 confirm that the server’s datastore schema are compatible with the
 client, they can simply check the names and versions of the packages
 advertised in YANG library to know what schema to expect in the
 server datastores.

 YANG package definitions can also be used to define the content
 schema associated with YANG instance data files holding other, e.g.,
 non packages related, instance data.

5.1. Package definition rules

 Packages are defined using the following rules:

 1. A YANG package MAY represent a referentially complete set of
 modules or MAY represent a set of modules with some module import
 dependencies missing, as described in Section 5.4.

 2. Packages definitions are hierarchical. A package can include
 other packages. Only a single version of a package can be
 included, and conflicting package includes (e.g. from descendant
 package includes) MUST be explicitly resolved by indicating which
 version takes precedence, and which versions are being replaced.

 3. YANG packages definitions MAY include modules containing
 deviation statements, but those deviation statements MUST only be
 used in an [RFC7950] compatible way to indicate where a server,
 or class of servers, deviates from a published standard.
 Deviations MUST NOT be included in a package definition that is
 part of a published standard. See section Section 5.8.1 for
 further guidance on the use of deviations in YANG packages.

 4. For each module implemented by a package, only a single revision
 of that module MUST be implemented. Multiple revisions of a
 module MAY be listed as import-only dependencies.

 5. The revision of a module listed in the package ’module’ list
 supersedes any ’implemented’ revision of the module listed in an
 included package module list. The ’replaces-revision’ leaf-list
 is used to indicate which ’implemented’ or ’import-only’ module
 revisions are replaces by this module revision. This allows a
 package to explicitly resolve conflicts between implemented
 module revisions in included packages.

Wilton, et al. Expires 5 September 2022 [Page 7]

Internet-Draft YANG Packages March 2022

 6. The ’replaces-revision’ leaf-list in the ’import-only-module’
 list can be used to exclude duplicate revisions of import-only
 modules from included packages. Otherwise, the import-only-
 modules for a package are the import-only-modules from all
 included packages combined with any modules listed in the
 packages import-only-module list.

5.2. Package versioning

 Individual versions of a YANG package are versioned using the
 "revision-label" scheme defined in section 3.3 of
 [I-D.ietf-netmod-yang-module-versioning].

5.2.1. Updating a package with a new version

 Package compatibility is fundamentally defined by how the package
 schema between two package versions has changed.

 When a package definition is updated, the version associated with the
 package MUST be updated appropriately, taking into consideration the
 scope of the changes as defined by the rules below.

5.2.1.1. Non-Backwards-compatible changes

 The following changes classify as non-backwards-compatible changes to
 a package definition:

 * Changing an ’included-package’ list entry to select a package
 version that is non-backwards-compatible to the prior package
 version, or removing a previously included package.

 * Changing a ’module’ or ’import-only-module’ list entry to select a
 module revision that is non-backwards-compatible to the prior
 module revision, or removing a previously implemented module.

 * Removing a feature from the ’mandatory-feature’ leaf-list.

 * Adding, changing, or removing a module containing one or more
 deviations, that when applied to the target module would create a
 change that is considered a non-backwards-compatible change to the
 affected data node in the schema associated with the prior package
 version.

5.2.1.2. Backwards-compatible changes

 The following changes classify as backwards-compatible changes to a
 package definition:

Wilton, et al. Expires 5 September 2022 [Page 8]

Internet-Draft YANG Packages March 2022

 * Changing an ’included-package’ list entry to select a package
 version that is backwards-compatible to the prior package version,
 or including a new package that does not conflict with any
 existing included package or module.

 * Changing a ’module’ or ’import-only-module’ list entry to select a
 module revision that is backwards-compatible to the prior module
 revision, or including a new module to the package definition.

 * Adding a feature to the ’mandatory-feature’ leaf-list.

 * Adding, changing, or removing a module containing one or more
 deviations, that when applied to the target module would create a
 change that is considered a backwards-compatible change to the
 affected data node in the schema associated with the prior package
 version.

5.2.1.3. Editorial changes

 The following changes classify as editorial changes to a package
 definition:

 * Changing a ’included-package’ list entry to select a package
 version that is classified as an editorial change relative to the
 prior package version.

 * Changing a ’module’ or ’import-only-module’ list entry to select a
 module revision that is classified as an editorial change relative
 to the prior module revision.

 * Any change to any metadata associated with a package definition.

5.2.2. YANG Semantic Versioning for packages

 YANG Semantic Versioning [I-D.ietf-netmod-yang-semver] MAY be used as
 an appropriate type of revision-label for the package version leaf.

 If the format of the leaf matches the ’ysver:version’ type specified
 in ietf-yang-semver.yang, then the package version leaf MUST be
 interpreted as a YANG semantic version number.

 For YANG packages defined by the IETF, YANG semantic version numbers
 MUST be used as the version scheme for YANG packages.

 The rules for incrementing the YANG package version number are
 equivalent to the semantic versioning rules used to version
 individual YANG modules, defined in section 3.2 of
 [I-D.ietf-netmod-yang-semver], but use the rules defined previously

Wilton, et al. Expires 5 September 2022 [Page 9]

Internet-Draft YANG Packages March 2022

 in Section 5.2.1 to determine whether a change is classified as non-
 backwards-compatible, backwards-compatible, or editorial. Where
 available, the semantic version number of the referenced elements in
 the package (included packages or modules) can be used to help
 determine the scope of changes being made.

5.3. Package conformance

 YANG packages allows for conformance to be checked at a package level
 rather than requiring a client to download all modules, revisions,
 and deviations from the server to ensure that the datastore schema
 used by the server is compatible with the client.

 YANG package conformance is analogous to how YANG [RFC7950] requires
 that servers either implement a module faithfully, or otherwise use
 deviations to indicate areas of non-conformance.

 For a top level package representing a datastore schema, servers MUST
 implement the package definition faithfully, including all mandatory
 features.

 Package definitions MAY modify the schema for directly or
 hierarchically included packages through the use of different module
 revisions or module deviations.

5.3.1. Use of YANG semantic versioning

 Using the YANG semantic versioning scheme for package version numbers
 and module revision labels can help with conformance. In the general
 case, clients should be able to determine the nature of changes
 between two package versions by comparing the version number.

 This usually means that a client does not have to be restricted to
 working only with servers that advertise exactly the same version of
 a package in YANG library. Instead, reasonable clients should be
 able to interoperate with any server that supports a package version
 that is backwards compatible to version that the client is designed
 for, assuming that the client is designed to ignore operational
 values for unknown data nodes.

 For example, a client coded to support ’foo’ package at version 1.0.0
 should interoperate with a server implementing ’foo’ package at
 version 1.3.5, because the YANG semantic versioning rules require
 that package version 1.3.5 is backwards compatible to version 1.0.0.

 This also has a relevance on servers that are capable of supporting
 version selection because they need not support every version of a
 YANG package to ensure good client compatibility. Choosing suitable

Wilton, et al. Expires 5 September 2022 [Page 10]

Internet-Draft YANG Packages March 2022

 minor versions within each major version number should generally be
 sufficient, particular if they can avoid non-backwards-compatible
 patch level changes.

5.3.2. The relationship between packages and datastores

 As defined by NMDA [RFC8342], each datastore has an associated
 datastore schema. Sections 5.1 and 5.3 of NMDA defines further
 constraints on the schema associated with datastores. These
 constraints can be summarized thus:

 * The schema for all conventional datastores is the same.

 * The schema for non conventional configuration datastores (e.g.,
 dynamic datastores) may completely differ (i.e. no overlap at all)
 from the schema associated with the conventional configuration
 datastores, or may partially or fully overlap with the schema of
 the conventional configuration datastores. A dynamic datastore,
 for example, may support different modules than conventional
 datastores, or may support a subset or superset of modules,
 features, or data nodes supported in the conventional
 configuration datastores. Where a data node exists in multiple
 datastore schema it has the same type, properties and semantics.

 * The schema for the operational datastore is intended to be a
 superset of all the configuration datastores (i.e. includes all
 the schema nodes from the conventional configuration datastores),
 but data nodes can be omitted if they cannot be accurately
 reported. The operational datastore schema can include additional
 modules containing only config false data nodes, but there is no
 harm in including those modules in the configuration datastore
 schema as well.

 Given that YANG packages represent a schema, it follows that each
 datastore schema can be represented using packages. In addition, the
 schema for most datastores on a server are often closely related.
 Given that there are many ways that a datastore schema could be
 represented using packages, the following guidance provides a
 consistent approach to help clients understand the relationship
 between the different datastore schema supported by a device (e.g.,
 which parts of the schema are common and which parts have
 differences):

 * Any datastores (e.g., conventional configuration datastores) that
 have exactly the same datastore schema MUST use the same package
 definitions. This is to avoid, for example, the creation of a
 ’running-cfg’ package and a separate ’intended-cfg’ package that
 have identical schema.

Wilton, et al. Expires 5 September 2022 [Page 11]

Internet-Draft YANG Packages March 2022

 * Common package definitions SHOULD be used for those parts of the
 datastore schema that are common between datastores, when those
 datastores do not share exactly the same datastore schema. E.g.,
 if a substantial part of the schema is common between the
 conventional, dynamic, and operational datastores then a single
 common package can be used to describe the common parts, along
 with other packages to describe the unique parts of each datastore
 schema.

 * YANG modules that do not contain any configuration data nodes
 SHOULD be included in the package for configuration datastores if
 that helps unify the package definitions.

 * The packages for the operational datastore schema MUST include all
 packages for all configuration datastores, along with any required
 modules defining deviations to mark unsupported data nodes. The
 deviations MAY be defined directly in the packages defining the
 operational datastore schema, or in separate non referentially
 complete packages.

 * The schema for a datastore MAY be represented using a single
 package or as the union of a set of compatible packages, i.e.,
 equivalently to a set of non-conflicting packages being included
 together in an overarching package definition.

5.4. Schema referential completeness

 A YANG package may represent a schema that is ’referentially
 complete’, or ’referentially incomplete’, indicated in the package
 definition by the ’complete’ flag.

 If all import statements in all YANG modules included in the package
 (either directly, or through included packages) can be resolved to a
 module revision defined with the YANG package definition, then the
 package is classified as referentially complete. Conversely, if one
 or more import statements cannot be resolved to a module specified as
 part of the package definition, then the package is classified as
 referentially incomplete.

 A package that represents the exact contents of a datastore schema
 MUST always be referentially complete.

Wilton, et al. Expires 5 September 2022 [Page 12]

Internet-Draft YANG Packages March 2022

 Referentially incomplete packages can be used, along with locally
 scoped packages, to represent an update to a device’s datastore
 schema as part of an optional software hot fix. E.g., the base
 software is made available as a complete globally scoped package.
 The hot fix is made available as an incomplete globally scoped
 package. A device’s datastore schema can define a local package that
 implements the base software package updated with the hot fix
 package.

 Referentially incomplete packages could also be used to group sets of
 logically related modules together, but without requiring a fixed
 dependency on all imported ’types’ modules (e.g., iana-if-
 types.yang), instead leaving the choice of specific revisions of
 ’types’ modules to be resolved when the package definition is used.

5.5. Package name scoping and uniqueness

 YANG package names can be globally unique, or locally scoped to a
 particular server or device.

5.5.1. Globally scoped packages

 The name given to a package MUST be globally unique, and it MUST
 include an appropriate organization prefix in the name, equivalent to
 YANG module naming conventions.

 Ideally a YANG instance data file defining a particular package
 version would be publicly available at one or more URLs.

5.5.2. Server scoped packages

 Package definitions may be scoped to a particular server by setting
 the ’is-local’ leaf to true in the package definition.

 Locally scoped packages MAY have a package name that is not globally
 unique.

 Locally scoped packages MAY have a definition that is not available
 offline from the server in a YANG instance data file.

5.6. Submodules packages considerations

 As defined in [RFC7950] and [I-D.ietf-netmod-yang-semver], YANG
 conformance and versioning is specified in terms of particular
 revisions of YANG modules rather than for individual submodules.

Wilton, et al. Expires 5 September 2022 [Page 13]

Internet-Draft YANG Packages March 2022

 However, YANG package definitions also include the list of submodules
 included by a module, primarily to provide a location of where the
 submodule definition can be obtained from, allowing a schema to be
 fully constructed from a YANG package instance data file definition.

5.7. Package tags

 [I-D.ietf-netmod-module-tags] defines YANG module tags as a mechanism
 to annotate a module definition with additional metadata. Tags MAY
 also be associated to a package definition via the ’tags’ leaf-list.
 The tags use the same registry and definitions used by YANG module
 tags.

5.8. YANG Package Usage Guidance

 It is RECOMMENDED that organizations that publish YANG modules also
 publish YANG package definition that group and version those modules
 into units of related functionality. This increases
 interoperability, by encouraging implementations to use the same
 collections of YANG modules versions. Using packages also makes it
 easier to understand relationship between modules, and enables
 functionality to be described on a more abstract level than
 individual modules.

5.8.1. Use of deviations in YANG packages

 [RFC7950] section 5.6.3 defines deviations as the mechanism to allow
 servers to indicate where they do not conform to a published YANG
 module that is being implemented.

 In cases where implementations contain deviations from published
 packages, then those implementations SHOULD define a package that
 includes both the published packages and all modules containing
 deviations. This implementation specific package accurately reflects
 the schema used by the device and allows clients to determine how the
 implementation differs from the published package schema in an
 offline consumable way, e.g., when published in an instance data file
 (see section 6).

 Organizations may wish to reuse YANG modules and YANG packages
 published by other organizations for new functionality. Sometimes,
 they may desire to modify the published YANG modules. However, they
 MUST NOT use deviations in an attempt to achieve this because such
 deviations cause two problems:

 They prevent implementations from reporting their own deviations
 for the same nodes.

Wilton, et al. Expires 5 September 2022 [Page 14]

Internet-Draft YANG Packages March 2022

 They fracture the ecosystem by preventing implementations from
 conforming to the standards specified by both organizations. This
 hurts the interoperability in the YANG community, promotes
 development of disconnected functional silos, and hurts creativity
 in the market.

5.8.2. Use of features in YANG modules and YANG packages

 The YANG language supports feature statements as the mechanism to
 make parts of a schema optional. Published standard YANG modules
 SHOULD make use of appropriate feature statements to provide
 flexibility in how YANG modules may be used by implementations and
 used by YANG modules published by other organizations.

 YANG packages support ’mandatory features’ which allow a package to
 specify features that MUST be implemented by any conformant
 implementation of the package as a mechanism to simplify and manage
 the schema represented by a YANG package.

5.9. YANG package core definition

 The ietf-yang-package-types.yang module defines a grouping to specify
 the core elements of the YANG package structure that is used within
 YANG package instance data files (ietf-yang-package-instance.yang)
 and also on the server (ietf-yang-packages.yang).

 The "ietf-yang-package-types" YANG module has the following
 structure:

Wilton, et al. Expires 5 September 2022 [Page 15]

Internet-Draft YANG Packages March 2022

 module: ietf-yang-package-types

 grouping yang-pkg-identification-leafs
 +-- name pkg-name
 +-- version pkg-version

 grouping yang-pkg-instance
 +-- name pkg-name
 +-- version pkg-version
 +-- timestamp? yang:date-and-time
 +-- organization? string
 +-- contact? string
 +-- description? string
 +-- reference? string
 +-- complete? boolean
 +-- local? boolean
 +-- tag* tags:tag
 +-- mandatory-feature* scoped-feature
 +-- included-package* [name version]
 | +-- name pkg-name
 | +-- version pkg-version
 | +-- replaces-version* pkg-version
 | +-- location* inet:uri
 +-- module* [name]
 | +-- name yang:yang-identifier
 | +-- revision? rev:revision-date-or-label
 | +-- replaces-revision* rev:revision-date-or-label
 | +-- namespace? inet:uri
 | +-- location* inet:uri
 | +-- submodule* [name]
 | +-- name? yang:yang-identifier
 | +-- revision yang:revision-identifier
 | +-- location* inet:uri
 +-- import-only-module* [name revision]
 +-- name? yang:yang-identifier
 +-- revision? rev:revision-date-or-label
 +-- replaces-revision* rev:revision-date-or-label
 +-- namespace? inet:uri
 +-- location* inet:uri
 +-- submodule* [name]
 +-- name? yang:yang-identifier
 +-- revision yang:revision-identifier
 +-- location* inet:uri

Wilton, et al. Expires 5 September 2022 [Page 16]

Internet-Draft YANG Packages March 2022

6. Package Instance Data Files

 YANG packages SHOULD be available offline from the server, defined as
 YANG instance data files [I-D.ietf-netmod-yang-instance-file-format]
 using the schema below to define the package data.

 The following rules apply to the format of the YANG package instance
 files:

 1. The file SHOULD be encoded in JSON.

 2. The name of the file SHOULD follow the format "<package-
 name>@<version>.json".

 3. The package name MUST be specified in both the instance-data-set
 ’name’ and package ’name’ leafs.

 4. The ’description’ field of the instance-data-set SHOULD be "YANG
 package definition".

 5. The ’timestamp’, "organization’, ’contact’ fields are defined in
 both the instance-data-set metadata and the YANG package
 metadata. Package definitions SHOULD only define these fields as
 part of the package definition. If any of these fields are
 populated in the instance-data-set metadata then they MUST
 contain the same value as the corresponding leaves in the package
 definition.

 6. The ’revision’ list in the instance data file SHOULD NOT be used,
 since versioning is handled by the package definition.

 7. The instance data file for each version of a YANG package SHOULD
 be made available at one of more locations accessible via URLs.
 If one of the listed locations defines a definitive reference
 implementation for the package definition then it MUST be listed
 as the first entry in the list.

 The "ietf-yang-package" YANG module has the following structure:

Wilton, et al. Expires 5 September 2022 [Page 17]

Internet-Draft YANG Packages March 2022

 module: ietf-yang-package

 structure package:
 // Uses the yang-package-instance grouping defined in
 // ietf-yang-package-types.yang
 +-- name pkg-name
 +-- version pkg-version
 ... remainder of yang-package-instance grouping ...

7. Package Definitions on a Server

7.1. Package List

 A top level ’packages’ container holds the list of all versions of
 all packages known to the server. Each list entry uses the common
 package definition, but with the addition of package location that
 cannot be contained within a offline package definition contained in
 an instance data file.

 The ’/packages/package’ list MAY include multiple versions of a
 particular package. E.g. if the server is capable of allowing
 clients to select which package versions should be used by the
 server.

7.2. Tree diagram

 The "ietf-yang-packages" YANG module has the following structure:

 module: ietf-yang-packages
 +--ro packages
 +--ro package* [name version]
 // Uses the yang-package-instance grouping defined in
 // ietf-yang-package-types.yang, with location:
 +--ro name pkg-name
 +--ro version pkg-version
 ... remainder of yang-package-instance grouping ...
 +--ro location* inet:uri

Wilton, et al. Expires 5 September 2022 [Page 18]

Internet-Draft YANG Packages March 2022

8. YANG Library Package Bindings

 The YANG packages module also augments YANG library to allow a server
 to optionally indicate that a datastore schema is defined by a
 package, or a union of compatible packages. Since packages can
 generally be made available offline in instance data files, it may be
 sufficient for a client to only check that a compatible version of
 the package is implemented by the server without fetching either the
 package definition, or downloading and comparing the full list of
 modules and enabled features.

 If a server indicates that a datastore schema maps to a particular
 package, then it MUST exactly match the schema defined by that
 package, taking into account enabled features and any deviations.

 If a server cannot faithfully implement a package then it can define
 a new package to accurately report what it does implement. The new
 package can include the original package as an included package, and
 the new package can define additional modules containing deviations
 to the modules in the original package, allowing the new package to
 accurately describe the server’s behavior. There is no specific
 mechanism provided to indicate that a mandatory-feature in package
 definition is not supported on a server, but deviations MAY be used
 to disable functionality predicated by an if-feature statement.

 The "ietf-yl-packages" YANG module has the following structure:

 module: ietf-yl-packages
 augment /yanglib:yang-library/yanglib:schema:
 +--ro package* [name version]
 +--ro name -> /pkgs:packages/package/name
 +--ro version leafref

9. YANG packages as schema for YANG instance data document

 YANG package definitions can be used as the content schema definition
 for YANG instance data files. When using a package-based content
 schema, the name and version of the package MUST be specified, a
 package URL to the package definition MAY also be provided.

 The "ietf-yang-inst-data-pkg" YANG module has the following
 structure:

Wilton, et al. Expires 5 September 2022 [Page 19]

Internet-Draft YANG Packages March 2022

module: ietf-yang-inst-data-pkg

 augment-structure /yid:instance-data-set/yid:content-schema/yid:content-schema-
spec:
 +--:(pkg-schema)
 +-- pkg-schema
 +-- name pkg-name
 +-- version pkg-version
 +-- location* inet:uri

10. YANG Modules

 The YANG module definitions for the modules described in the previous
 sections.

 <CODE BEGINS>
 file "ietf-yang-package-types#0.3.0-draft-ietf-netmod-yang-packages-03.yang"
 module ietf-yang-package-types {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-package-types";
 prefix pkg-types;

 import ietf-yang-revisions {
 prefix rev;
 reference
 "XXXX: Updated YANG Module Revision Handling";
 }
 import ietf-yang-types {
 prefix yang;
 rev:revision-or-derived "2019-07-21";
 reference
 "RFC 6991bis: Common YANG Data Types.";
 }
 import ietf-inet-types {
 prefix inet;
 rev:revision-or-derived "2013-07-15";
 reference
 "RFC 6991: Common YANG Data Types.";
 }
 import ietf-module-tags {
 prefix tags;
 reference
 "RFC 8819: YANG Module Tags.";
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>

Wilton, et al. Expires 5 September 2022 [Page 20]

Internet-Draft YANG Packages March 2022

 WG List: <mailto:netmod@ietf.org>

 Author: Rob Wilton
 <mailto:rwilton@cisco.com>";
 description
 "This module provides type and grouping definitions for YANG
 packages.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX with actual RFC number and remove this
 // note.

 revision 2022-03-04 {
 rev:revision-label 0.3.0-draft-ietf-netmod-yang-packages-03;
 description
 "Initial revision";
 reference
 "RFC XXXX: YANG Packages";
 }

 /*
 * Typedefs
 */

 typedef pkg-name {
 type yang:yang-identifier;
 description
 "Package names are typed as YANG identifiers.";

Wilton, et al. Expires 5 September 2022 [Page 21]

Internet-Draft YANG Packages March 2022

 }

 typedef pkg-version {
 type rev:revision-date-or-label;
 description
 "Package versions SHOULD be a revision-label (e.g. perhaps a
 YANG Semver version string). Package versions MAY also be a
 revision-date";
 }

 typedef pkg-identifier {
 type rev:name-revision;
 description
 "Package identifiers combine a pkg-name and a pkg-version";
 }

 typedef scoped-feature {
 type string {
 pattern ’[a-zA-Z_][a-zA-Z0-9\-_.]*:[a-zA-Z_][a-zA-Z0-9\-_.]*’;
 }
 description
 "Represents a feature name scoped to a particular module,
 identified as the ’<module-name>:<feature-name>’, where both
 <module-name> and <feature-name> are YANG identifier strings,
 as defiend by Section 12 or RFC 6020.";
 reference
 "RFC XXXX, YANG Packages.";
 }

 /*
 * Groupings
 */

 grouping yang-pkg-identification-leafs {
 description
 "Parameters for identifying a specific version of a YANG
 package";
 leaf name {
 type pkg-name;
 mandatory true;
 description
 "The YANG package name.";
 }
 leaf version {
 type pkg-version;
 mandatory true;
 description
 "Uniquely identies a particular version of a YANG package.

Wilton, et al. Expires 5 September 2022 [Page 22]

Internet-Draft YANG Packages March 2022

 Follows the definition for revision labels defined in
 draft-verdt-nemod-yang-module-versioning, section XXX";
 }
 }

 grouping yang-pkg-instance {
 description
 "Specifies the data node for a full YANG package instance
 represented either on a server or as a YANG instance data
 document.";
 uses yang-pkg-identification-leafs;
 leaf timestamp {
 type yang:date-and-time;
 description
 "An optional timestamp for when this package was created.
 This does not need to be unique across all versions of a
 package.";
 }
 leaf organization {
 type string;
 description
 "Organization responsible for this package";
 }
 leaf contact {
 type string;
 description
 "Contact information for the person or organization to whom
 queries concerning this package should be sent.";
 }
 leaf description {
 type string;
 description
 "Provides a description of the package";
 }
 leaf reference {
 type string;
 description
 "Allows for a reference for the package";
 }
 leaf complete {
 type boolean;
 default "true";
 description
 "Indicates whether the schema defined by this package is
 referentially complete. I.e. all module imports can be
 resolved to a module explicitly defined in this package or
 one of the included packages.";
 }

Wilton, et al. Expires 5 September 2022 [Page 23]

Internet-Draft YANG Packages March 2022

 leaf local {
 type boolean;
 default "false";
 description
 "Defines that the package definition is local to the server,
 and the name of the package MAY not be unique, and the
 package definition MAY not be available in an offline file.

 Local packages can be used when the schema for the device
 can be changed at runtime through the addition or removal of
 software packages, or hot fixes.";
 }
 leaf-list tag {
 type tags:tag;
 description
 "Tags associated with a YANG package. Module tags defined in
 XXX, ietf-netmod-module-tags can be used here but with the
 modification that the tag applies to the entire package
 rather than a specific module. See the IANA ’YANG Module
 Tag Prefix’ registry for reserved prefixes and the IANA
 ’YANG Module IETF Tag’ registry for IETF standard tags.";
 }
 leaf-list mandatory-feature {
 type scoped-feature;
 description
 "Lists features from any modules included in the package that
 MUST be supported by any server implementing the package.

 Features already specified in a ’mandatory-feature’ list of
 any included package MUST also be supported by server
 implementations and do not need to be repeated in this list.

 All other features defined in modules included in the
 package are OPTIONAL to implement.

 Features are identified using <module-name>:<feature-name>";
 }
 list included-package {
 key "name version";
 description
 "An entry in this list represents a package that is included
 as part of the package definition, or an indirectly included
 package that is changed in a non backwards compatible way.

 It can be used to resolve inclusion of conflicting package
 versions by explicitly specifying which package version is
 used.

Wilton, et al. Expires 5 September 2022 [Page 24]

Internet-Draft YANG Packages March 2022

 If included packages implement different revisions
 of the same module, then an explicit entry in the
 module list MUST be provided to select the specific module
 revision ’implemented’ by this package definition.

 For import-only modules, the ’replaces-revision’ leaf-list
 can be used to select the specific module revisions used by
 this package.";
 reference
 "XXX";
 uses yang-pkg-identification-leafs;
 leaf-list replaces-version {
 type pkg-version;
 description
 "Gives the version of an included package version that
 is replaced by this included package version.";
 }
 leaf-list location {
 type inet:uri;
 description
 "Contains a URL that represents where an instance data file
 for this YANG package can be found.

 This leaf will only be present if there is a URL available
 for retrieval of the schema for this entry.

 If multiple locations are provided, then the first
 location in the leaf-list MUST be the definitive location
 that uniquely identifies this package";
 }
 }
 list module {
 key "name";
 description
 "An entry in this list represents a module that must be
 implemented by a server implementing this package, as per
 RFC 7950 section 5.6.5, with a particular set of supported
 features and deviations.

 A entry in this list overrides any module revision
 ’implemented’ by an included package. Any replaced module
 revision SHOULD also be listed in the ’replaces-revision’
 list.";
 reference
 "RFC 7950: The YANG 1.1 Data Modeling Language.";
 leaf name {
 type yang:yang-identifier;
 mandatory true;

Wilton, et al. Expires 5 September 2022 [Page 25]

Internet-Draft YANG Packages March 2022

 description
 "The YANG module name.";
 }
 leaf revision {
 type rev:revision-date-or-label;
 description
 "The YANG module revision date or revision-label.

 If no revision statement is present in the YANG module,
 this leaf is not instantiated.";
 }
 leaf-list replaces-revision {
 type rev:revision-date-or-label;
 description
 "Gives the revision of an module (implemented or
 import-only) defined in an included package that is
 replaced by this implemented module revision.";
 }
 leaf namespace {
 type inet:uri;
 description
 "The XML namespace identifier for this module.";
 }
 leaf-list location {
 type inet:uri;
 description
 "Contains a URL that represents the YANG schema resource
 for this module.

 This leaf will only be present if there is a URL available
 for retrieval of the schema for this entry.";
 }
 list submodule {
 key "name";
 description
 "Each entry represents one submodule within the
 parent module.";
 leaf name {
 type yang:yang-identifier;
 description
 "The YANG submodule name.";
 }
 leaf revision {
 type rev:revision-date-or-label;
 mandatory true;
 description
 "The YANG submodule revision date or revision-label.

Wilton, et al. Expires 5 September 2022 [Page 26]

Internet-Draft YANG Packages March 2022

 If the parent module include statement for this submodule
 includes a revision date then it MUST match the revision
 date specified here or it MUST match the revision-date
 associated with the revision-label specified here.";
 }
 leaf-list location {
 type inet:uri;
 description
 "Contains a URL that represents the YANG schema resource
 for this submodule.

 This leaf will only be present if there is a URL
 available for retrieval of the schema for this entry.";
 }
 }
 }
 list import-only-module {
 key "name revision";
 description
 "An entry in this list indicates that the server imports
 reusable definitions from the specified revision of the
 module, but does not implement any protocol accessible
 objects from this revision.

 Multiple entries for the same module name MAY exist. This
 can occur if multiple modules import the same module, but
 specify different revision-dates in the import statements.";
 leaf name {
 type yang:yang-identifier;
 description
 "The YANG module name.";
 }
 leaf revision {
 type rev:revision-date-or-label;
 description
 "The YANG module revision date or revision-label.

 If no revision statement is present in the YANG module,
 this leaf is not instantiated.";
 }
 leaf-list replaces-revision {
 type rev:revision-date-or-label;
 description
 "Gives the revision of an import-only-module defined in an
 included package that is replaced by this
 import-only-module revision.";
 }
 leaf namespace {

Wilton, et al. Expires 5 September 2022 [Page 27]

Internet-Draft YANG Packages March 2022

 type inet:uri;
 description
 "The XML namespace identifier for this module.";
 }
 leaf-list location {
 type inet:uri;
 description
 "Contains a URL that represents the YANG schema resource
 for this module.

 This leaf will only be present if there is a URL available
 for retrieval of the schema for this entry.";
 }
 list submodule {
 key "name";
 description
 "Each entry represents one submodule within the
 parent module.";
 leaf name {
 type yang:yang-identifier;
 description
 "The YANG submodule name.";
 }
 leaf revision {
 type yang:revision-identifier;
 mandatory true;
 description
 "The YANG submodule revision date. If the parent module
 include statement for this submodule includes a revision
 date then it MUST match this leaf’s value.";
 }
 leaf-list location {
 type inet:uri;
 description
 "Contains a URL that represents the YANG schema resource
 for this submodule.

 This leaf will only be present if there is a URL
 available for retrieval of the schema for this entry.";
 }
 }
 }
 }
 }
 <CODE ENDS>

Wilton, et al. Expires 5 September 2022 [Page 28]

Internet-Draft YANG Packages March 2022

 <CODE BEGINS>
 file "ietf-yang-package-instance#0.3.0-draft-ietf-netmod-yang-packages-03.ya
ng"
 module ietf-yang-package-instance {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-package-instance";
 prefix pkg-inst;

 import ietf-yang-revisions {
 prefix rev;
 reference
 "XXXX: Updated YANG Module Revision Handling";
 }
 import ietf-yang-package-types {
 prefix pkg-types;
 rev:revision-or-derived "0.2.0";
 reference
 "RFC XXX: this RFC.";
 }
 import ietf-yang-structure-ext {
 prefix sx;
 reference
 "RFC 8791: YANG Data Structure Extensions.";
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Rob Wilton
 <mailto:rwilton@cisco.com>";
 description
 "This module provides a definition of a YANG package, which is
 used as the content schema for an YANG instance data document specifying
 a YANG package.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see

Wilton, et al. Expires 5 September 2022 [Page 29]

Internet-Draft YANG Packages March 2022

 the RFC itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX with actual RFC number and remove this
 // note.

 revision 2022-03-04 {
 rev:revision-label 0.3.0-draft-ietf-netmod-yang-packages-03;
 description
 "Initial revision";
 reference
 "RFC XXXX: YANG Packages";
 }

 /*
 * Top-level structure
 */
 sx:structure "package" {
 description
 "Defines the YANG package structure for use in a YANG instance
 data document.";
 uses pkg-types:yang-pkg-instance;
 }
 }
 <CODE ENDS>

 <CODE BEGINS>
 file "ietf-yang-packages#0.3.0-draft-ietf-netmod-yang-packages-03.yang"
 module ietf-yang-packages {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-packages";
 prefix pkgs;

 import ietf-yang-revisions {
 prefix rev;
 reference
 "XXXX: Updated YANG Module Revision Handling";
 }
 import ietf-yang-package-types {
 prefix pkg-types;
 rev:revision-or-derived "0.2.0";

Wilton, et al. Expires 5 September 2022 [Page 30]

Internet-Draft YANG Packages March 2022

 reference
 "RFC XXX: this RFC.";
 }
 import ietf-inet-types {
 prefix inet;
 rev:revision-or-derived "2013-07-15";
 reference
 "RFC 6991: Common YANG Data Types.";
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Rob Wilton
 <mailto:rwilton@cisco.com>";
 description
 "This module defines YANG packages on a server implementation.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX with actual RFC number and remove this
 // note.

 revision 2022-03-04 {
 rev:revision-label 0.3.0-draft-ietf-netmod-yang-packages-03;
 description

Wilton, et al. Expires 5 September 2022 [Page 31]

Internet-Draft YANG Packages March 2022

 "Initial revision";
 reference
 "RFC XXXX: YANG Packages";
 }

 /*
 * Groupings
 */

 grouping yang-pkg-ref {
 description
 "Defines the leaves used to reference a single YANG package";
 leaf name {
 type leafref {
 path "/pkgs:packages/pkgs:package/pkgs:name";
 }
 description
 "The name of the references package.";
 }
 leaf version {
 type leafref {
 path "/pkgs:packages"
 + ’/pkgs:package[pkgs:name = current()/../name]’
 + "/pkgs:version";
 }
 description
 "The version of the referenced package.";
 }
 }

 grouping yang-ds-pkg-ref {
 description
 "Defines the list used to reference a set of YANG packages that
 collectively represent a datastore schema.";
 list package {
 key "name version";
 description
 "Identifies the YANG packages that collectively defines the
 schema for the associated datastore.

 The datastore schema is defined as the union of all
 referenced packages, that MUST represent a referentially
 complete schema.

 All of the referenced packages must be compatible with no
 conflicting module versions or dependencies.";
 uses yang-pkg-ref;
 }

Wilton, et al. Expires 5 September 2022 [Page 32]

Internet-Draft YANG Packages March 2022

 }

 /*
 * Top level data nodes.
 */

 container packages {
 config false;
 description
 "All YANG package definitions";
 list package {
 key "name version";
 description
 "YANG package instance";
 uses pkg-types:yang-pkg-instance;
 leaf-list location {
 type inet:uri;
 description
 "Contains a URL that represents where an instance data file
 for this YANG package can be found.

 This leaf will only be present if there is a URL available
 for retrieval of the schema for this entry.

 If multiple locations are provided, then the first
 location in the leaf-list MUST be the definitive location
 that uniquely identifies this package";
 }
 }
 }
 }
 <CODE ENDS>

 <CODE BEGINS>
 file "ietf-yl-package#0.3.0-draft-ietf-netmod-yang-packages-03.yang"
 module ietf-yl-packages {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yl-packages";
 prefix yl-pkgs;

 import ietf-yang-revisions {
 prefix rev;
 reference
 "XXXX: Updated YANG Module Revision Handling";
 }
 import ietf-yang-packages {
 prefix pkgs;
 rev:revision-or-derived "0.2.0";

Wilton, et al. Expires 5 September 2022 [Page 33]

Internet-Draft YANG Packages March 2022

 reference
 "RFC XXX: YANG Packages.";
 }
 import ietf-yang-library {
 prefix yanglib;
 rev:revision-or-derived "2019-01-04";
 reference
 "RFC 8525: YANG Library";
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Rob Wilton
 <mailto:rwilton@cisco.com>";
 description
 "This module provides defined augmentations to YANG library to
 allow a server to report YANG package information.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX with actual RFC number and remove this
 // note.

 revision 2022-03-04 {

Wilton, et al. Expires 5 September 2022 [Page 34]

Internet-Draft YANG Packages March 2022

 rev:revision-label 0.3.0-draft-ietf-netmod-yang-packages-03;
 description
 "Initial revision";
 reference
 "RFC XXXX: YANG Packages";
 }

 /*
 * Augmentations
 */

 augment "/yanglib:yang-library/yanglib:schema" {
 description
 "Allow datastore schema to be related to a set of YANG
 packages";
 uses pkgs:yang-ds-pkg-ref;
 }
 }
 <CODE ENDS>

 <CODE BEGINS>
 file "ietf-yang-inst-data-pkg#0.3.0-draft-ietf-netmod-yang-packages-03.yang"
 module ietf-yang-inst-data-pkg {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-inst-data-pkg";
 prefix yid-pkg;

 import ietf-yang-revisions {
 prefix rev;
 reference
 "XXXX: Updated YANG Module Revision Handling";
 }
 import ietf-yang-package-types {
 prefix pkg-types;
 rev:revision-or-derived "0.2.0";
 reference
 "RFC XXX: this RFC.";
 }
 import ietf-yang-structure-ext {
 prefix sx;
 reference
 "RFC 8791: YANG Data Structure Extensions.";
 }
 import ietf-yang-instance-data {
 prefix yid;
 reference
 "RFC 9195: A File Format for YANG Instance Data.";
 }

Wilton, et al. Expires 5 September 2022 [Page 35]

Internet-Draft YANG Packages March 2022

 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types.";
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Rob Wilton
 <mailto:rwilton@cisco.com>";
 description
 "The module augments ietf-yang-instance-data to allow package
 definitions to be used to define content schema in YANG instance data
 documents.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX with actual RFC number and remove this
 // note.

 revision 2022-03-04 {
 rev:revision-label 0.3.0-draft-ietf-netmod-yang-packages-03;
 description
 "Initial revision";
 reference

Wilton, et al. Expires 5 September 2022 [Page 36]

Internet-Draft YANG Packages March 2022

 "RFC XXXX: YANG Packages";
 }

 /*
 * Augmentations
 */
 sx:augment-structure "/yid:instance-data-set/yid:content-schema/yid:content-
schema-spec" {
 description
 "Add package reference to instance data set schema
 specification";
 case pkg-schema {
 container pkg-schema {
 uses pkg-types:yang-pkg-identification-leafs;
 leaf-list location {
 type inet:uri;
 description
 "Contains a URL that represents where an instance data
 file for this YANG package can be found.

 This leaf will only be present if there is a URL
 available for retrieval of the schema for this entry.

 If multiple locations are provided, then the first
 location in the leaf-list MUST be the definitive
 location that uniquely identifies this package";
 }
 }
 }
 }
 }
 <CODE ENDS>

11. Security Considerations

 The YANG modules specified in this document defines a schema for data
 that is accessed by network management protocols such as NETCONF
 [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the
 secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC5246].

 The NETCONF access control model [RFC6536] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

Wilton, et al. Expires 5 September 2022 [Page 37]

Internet-Draft YANG Packages March 2022

 Similarly to YANG library [I-D.ietf-netconf-rfc7895bis], some of the
 readable data nodes in these YANG modules may be considered sensitive
 or vulnerable in some network environments. It is thus important to
 control read access (e.g., via get, get-config, or notification) to
 these data nodes.

 One additional key different to YANG library, is that the ’ietf-yang-
 package’ YANG module defines a schema to allow YANG packages to be
 defined in YANG instance data files, that are outside the security
 controls of the network management protocols. Hence, it is important
 to also consider controlling access to these package instance data
 files to restrict access to sensitive information.

 As per the YANG library security considerations, the module, revision
 information in YANG packages may help an attacker identify the server
 capabilities and server implementations with known bugs since the set
 of YANG modules supported by a server may reveal the kind of device
 and the manufacturer of the device. Server vulnerabilities may be
 specific to particular modules, module revisions, module features, or
 even module deviations. For example, if a particular operation on a
 particular data node is known to cause a server to crash or
 significantly degrade device performance, then the YANG packages
 information will help an attacker identify server implementations
 with such a defect, in order to launch a denial-of-service attack on
 the device.

12. IANA Considerations

 It is expected that a central registry of standard YANG package
 definitions is required to support this solution.

 It is unclear whether an IANA registry is also required to manage
 specific package versions. It is highly desirable to have a specific
 canonical location, under IETF control, where the definitive YANG
 package versions can be obtained from.

 This document requests IANA to registers a URI in the "IETF XML
 Registry" [RFC3688]. Following the format in RFC 3688, the following
 registrations are requested.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-package-types.yang
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-package-instance.yang
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

Wilton, et al. Expires 5 September 2022 [Page 38]

Internet-Draft YANG Packages March 2022

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-packages.yang
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-yl-packages.yang
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-inst-data-pkg.yang
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 This document requests that the following YANG modules are added in
 the "YANG Module Names" registry [RFC6020]:

 Name: ietf-yang-package-types.yang
 Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-package-
 types.yang
 Prefix: pkg-types
 Reference: RFC XXXX

 Name: ietf-yang-package-instance.yang
 Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-package-
 instance.yang
 Prefix: pkg-inst
 Reference: RFC XXXX

 Name: ietf-yang-packages.yang
 Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-packages.yang
 Prefix: pkgs
 Reference: RFC XXXX

 Name: ietf-yl-packages.yang
 Namespace: urn:ietf:params:xml:ns:yang:ietf-yl-packages.yang
 Prefix: yl-pkgs
 Reference: RFC XXXX

 Name: ietf-yang-inst-data-pkg.yang
 Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-inst-data-
 pkg.yang
 Prefix: yid-pkg
 Reference: RFC XXXX

13. Open Questions/Issues

 All issues, along with the draft text, are currently being tracked at
 https://github.com/rgwilton/YANG-Packages-Draft/issues/

Wilton, et al. Expires 5 September 2022 [Page 39]

Internet-Draft YANG Packages March 2022

14. Acknowledgements

 Feedback helping shape this document has kindly been provided by Andy
 Bierman, James Cumming, Mahesh Jethanandani, Balazs Lengyel, Ladislav
 Lhotka,and Jan Lindblad.

15. References

15.1. Normative References

 [I-D.ietf-netconf-rfc7895bis]
 Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", Work in Progress, Internet-
 Draft, draft-ietf-netconf-rfc7895bis-07, 17 October 2018,
 <https://www.ietf.org/archive/id/draft-ietf-netconf-
 rfc7895bis-07.txt>.

 [I-D.ietf-netmod-module-tags]
 Hopps, C., Berger, L., and D. Bogdanovic, "YANG Module
 Tags", Work in Progress, Internet-Draft, draft-ietf-
 netmod-module-tags-10, 29 February 2020,
 <https://www.ietf.org/archive/id/draft-ietf-netmod-module-
 tags-10.txt>.

 [I-D.ietf-netmod-yang-data-ext]
 Bierman, A., Bjorklund, M., and K. Watsen, "YANG Data
 Structure Extensions", Work in Progress, Internet-Draft,
 draft-ietf-netmod-yang-data-ext-05, 9 December 2019,
 <https://www.ietf.org/archive/id/draft-ietf-netmod-yang-
 data-ext-05.txt>.

 [I-D.ietf-netmod-yang-instance-file-format]
 Lengyel, B. and B. Claise, "A File Format for YANG
 Instance Data", Work in Progress, Internet-Draft, draft-
 ietf-netmod-yang-instance-file-format-21, 8 October 2021,
 <https://www.ietf.org/archive/id/draft-ietf-netmod-yang-
 instance-file-format-21.txt>.

 [I-D.ietf-netmod-yang-module-versioning]
 Wilton, R., Rahman, R., Lengyel, B., Clarke, J., and J.
 Sterne, "Updated YANG Module Revision Handling", Work in
 Progress, Internet-Draft, draft-ietf-netmod-yang-module-
 versioning-05, 8 November 2021,
 <https://www.ietf.org/archive/id/draft-ietf-netmod-yang-
 module-versioning-05.txt>.

Wilton, et al. Expires 5 September 2022 [Page 40]

Internet-Draft YANG Packages March 2022

 [I-D.ietf-netmod-yang-semver]
 Clarke, J., Wilton, R., Rahman, R., Lengyel, B., Sterne,
 J., and B. Claise, "YANG Semantic Versioning", Work in
 Progress, Internet-Draft, draft-ietf-netmod-yang-semver-
 06, 30 November 2021, <https://www.ietf.org/archive/id/
 draft-ietf-netmod-yang-semver-06.txt>.

 [I-D.ietf-netmod-yang-solutions]
 Wilton, R., "YANG Versioning Solution Overview", Work in
 Progress, Internet-Draft, draft-ietf-netmod-yang-
 solutions-01, 2 November 2020,
 <https://www.ietf.org/archive/id/draft-ietf-netmod-yang-
 solutions-01.txt>.

 [I-D.ietf-netmod-yang-ver-selection]
 Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,
 "YANG Schema Selection", Work in Progress, Internet-Draft,
 draft-ietf-netmod-yang-ver-selection-00, 17 March 2020,
 <https://www.ietf.org/archive/id/draft-ietf-netmod-yang-
 ver-selection-00.txt>.

 [I-D.ietf-netmod-yang-versioning-reqs]
 Clarke, J., "YANG Module Versioning Requirements", Work in
 Progress, Internet-Draft, draft-ietf-netmod-yang-
 versioning-reqs-06, 6 January 2022,
 <https://www.ietf.org/archive/id/draft-ietf-netmod-yang-
 versioning-reqs-06.txt>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

Wilton, et al. Expires 5 September 2022 [Page 41]

Internet-Draft YANG Packages March 2022

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <https://www.rfc-editor.org/info/rfc6536>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", RFC 8525,
 DOI 10.17487/RFC8525, March 2019,
 <https://www.rfc-editor.org/info/rfc8525>.

 [RFC8791] Bierman, A., Björklund, M., and K. Watsen, "YANG Data
 Structure Extensions", RFC 8791, DOI 10.17487/RFC8791,
 June 2020, <https://www.rfc-editor.org/info/rfc8791>.

15.2. Informative References

 [I-D.bierman-netmod-yang-package]
 Bierman, A., "The YANG Package Statement", Work in
 Progress, Internet-Draft, draft-bierman-netmod-yang-
 package-00, 6 July 2015, <https://www.ietf.org/archive/id/
 draft-bierman-netmod-yang-package-00.txt>.

Wilton, et al. Expires 5 September 2022 [Page 42]

Internet-Draft YANG Packages March 2022

 [I-D.ietf-netmod-artwork-folding]
 Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,
 "Handling Long Lines in Content of Internet-Drafts and
 RFCs", Work in Progress, Internet-Draft, draft-ietf-
 netmod-artwork-folding-12, 20 January 2020,
 <https://www.ietf.org/archive/id/draft-ietf-netmod-
 artwork-folding-12.txt>.

 [openconfigsemver]
 "Semantic Versioning for OpenConfig Models",
 <http://www.openconfig.net/docs/semver/>.

 [RFC8199] Bogdanovic, D., Claise, B., and C. Moberg, "YANG Module
 Classification", RFC 8199, DOI 10.17487/RFC8199, July
 2017, <https://www.rfc-editor.org/info/rfc8199>.

Appendix A. Examples

 This section provides various examples of YANG packages, and as such
 this text is non-normative. The purpose of the examples is to only
 illustrate the file format of YANG packages, and how package
 dependencies work. It does not imply that such packages will be
 defined by IETF, or which modules would be included in those packages
 even if they were defined. For brevity, the examples exclude
 namespace declarations, and use a shortened URL of "tiny.cc/ietf-
 yang" as a replacement for
 "https://raw.githubusercontent.com/YangModels/yang/master/standard/
 ietf/RFC".

A.1. Example IETF Network Device YANG package

 This section provides an instance data file example of an IETF
 Network Device YANG package formatted in JSON.

 This example package is intended to represent the standard set of
 YANG modules, with import dependencies, to implement a basic network
 device without any dynamic routing or layer 2 services. E.g., it
 includes functionality such as system information, interface and
 basic IP configuration.

 As for all YANG packages, all import dependencies are fully resolved.
 Because this example uses YANG modules that have been standardized
 before YANG semantic versioning, the modules are referenced by
 revision date rather than revision number.

Wilton, et al. Expires 5 September 2022 [Page 43]

Internet-Draft YANG Packages March 2022

 <CODE BEGINS> file "example-ietf-network-device-pkg.json"
 ========= NOTE: ’\’ line wrapping per BCP XX (RFC XXXX) ===========

 {
 "ietf-yang-instance-data:instance-data-set": {
 "name": "example-ietf-network-device-pkg",
 "content-schema": {
 "pkg-schema": {
 "name": "ietf-yang-package-defn-pkg",
 "version": "0.1.0"
 }
 },
 "description": "YANG package definition",
 "content-data": {
 "ietf-yang-package-instance:yang-package": {
 "name": "example-ietf-network-device-pkg",
 "version": "1.1.2",
 "timestamp": "2018-12-13T17:00:00Z",
 "organization": "IETF NETMOD Working Group",
 "contact" : "WG Web: <http://tools.ietf.org/wg/netmod/>, \
 WG List: <mailto:netmod@ietf.org>",
 "description": "Example IETF network device YANG package.\
 \
 This package defines a small sample set of \
 YANG modules that could represent the basic set of \
 modules that a standard network device might be expected \
 to support.",
 "reference": "XXX, draft-rwilton-netmod-yang-packages",
 "location": ["file://example.org/yang/packages/\
 ietf-network-device@v1.1.2.json"],
 "module": [
 {
 "name": "iana-crypt-hash",
 "revision": "2014-08-06",
 "location": ["https://tiny.cc/ietf-yang/\
 iana-crypt-hash%402014-08-06.yang"],
 },
 {
 "name": "ietf-system",
 "revision": "2014-08-06",
 "location": ["https://tiny.cc/ietf-yang/\
 ietf-system%402014-08-06.yang"],
 },
 {
 "name": "ietf-interfaces",
 "revision": "2018-02-20",
 "location": ["https://tiny.cc/ietf-yang/\
 ietf-interfaces%402018-02-20.yang"],

Wilton, et al. Expires 5 September 2022 [Page 44]

Internet-Draft YANG Packages March 2022

 },
 {
 "name": "ietf-netconf-acm",
 "revision": "2018-02-14",
 "location": ["https://tiny.cc/ietf-yang/\
 ietf-netconf-acm%402018-02-14.yang"],
 },
 {
 "name": "ietf-key-chain",
 "revision": "2017-06-15",
 "location": ["https://tiny.cc/ietf-yang/\
 ietf-key-chain@2017-06-15.yang"],
 },
 {
 "name": "ietf-ip",
 "revision": "2018-02-22",
 "location": ["https://tiny.cc/ietf-yang/\
 ietf-ip%402018-02-22.yang"],
 }
],
 "import-only-module": [
 {
 "name": "ietf-yang-types",
 "revision": "2013-07-15",
 "location": ["https://tiny.cc/ietf-yang/\
 ietf-yang-types%402013-07-15.yang"],
 },
 {
 "name": "ietf-inet-types",
 "revision": "2013-07-15",
 "location": ["https://tiny.cc/ietf-yang/\
 ietf-inet-types%402013-07-15.yang"],
 }
]
 }
 }
 }
 }
 <CODE ENDS>

A.2. Example IETF Basic Routing YANG package

 This section provides an instance data file example of a basic IETF
 Routing YANG package formatted in JSON.

Wilton, et al. Expires 5 September 2022 [Page 45]

Internet-Draft YANG Packages March 2022

 This example package is intended to represent the standard set of
 YANG modules, with import dependencies, that builds upon the example-
 ietf-network-device YANG package to add support for basic dynamic
 routing and ACLs.

 As for all YANG packages, all import dependencies are fully resolved.
 Because this example uses YANG modules that have been standardized
 before YANG semantic versioning, they modules are referenced by
 revision date rather than revision number. Locations have been
 excluded where they are not currently known, e.g., for YANG modules
 defined in IETF drafts. In a normal YANG package, locations would be
 expected to be provided for all YANG modules.

 <CODE BEGINS> file "example-ietf-routing-pkg.json"
 ========== NOTE: ’\’ line wrapping per BCP XX (RFC XXXX) ===========

 {
 "ietf-yang-instance-data:instance-data-set": {
 "name": "example-ietf-routing-pkg",
 "content-schema": {
 "pkg-schema": {
 "name": "ietf-yang-package-defn-pkg",
 "version": "0.1.0"
 }
 },
 "description": "YANG package definition",
 "content-data": {
 "ietf-yang-package-instance:yang-package": {
 "name": "example-ietf-routing",
 "version": "1.3.1",
 "timestamp": "2018-12-13T17:00:00Z",
 "description": "This package defines a small sample set of \
 IETF routing YANG modules that could represent the set of \
 IETF routing functionality that a basic IP network device \
 might be expected to support.",
 "reference": "XXX, draft-rwilton-netmod-yang-packages",
 "imported-packages": [
 {
 "name": "ietf-network-device",
 "version": "1.1.2",
 "location": ["http://example.org/yang/packages/\
 ietf-network-device@v1.1.2.json"],
 }
],
 "module": [
 {
 "name": "ietf-routing",
 "revision": "2018-03-13",

Wilton, et al. Expires 5 September 2022 [Page 46]

Internet-Draft YANG Packages March 2022

 "location": ["https://tiny.cc/ietf-yang/\
 ietf-routing@2018-03-13.yang"],
 },
 {
 "name": "ietf-ipv4-unicast-routing",
 "revision": "2018-03-13",
 "location": ["https://tiny.cc/ietf-yang/\
 ietf-ipv4-unicast-routing@2018-03-13.yang"],
 },
 {
 "name": "ietf-ipv6-unicast-routing",
 "revision": "2018-03-13",
 "location": ["https://tiny.cc/ietf-yang/\
 ietf-ipv6-unicast-routing@2018-03-13.yang"],
 },
 {
 "name": "ietf-isis",
 "revision": "2018-12-11",
 "location": ["https://tiny.cc/ietf-yang/\
 "],
 },
 {
 "name": "ietf-interfaces-common",
 "revision": "2018-07-02",
 "location": ["https://tiny.cc/ietf-yang/\
 "],
 },
 {
 "name": "ietf-if-l3-vlan",
 "revision": "2017-10-30",
 "location": ["https://tiny.cc/ietf-yang/\
 "],
 },
 {
 "name": "ietf-routing-policy",
 "revision": "2018-10-19",
 "location": ["https://tiny.cc/ietf-yang/\
 "],
 },
 {
 "name": "ietf-bgp",
 "revision": "2018-05-09",
 "location": ["https://tiny.cc/ietf-yang/\
 "],
 },
 {
 "name": "ietf-access-control-list",
 "revision": "2018-11-06",

Wilton, et al. Expires 5 September 2022 [Page 47]

Internet-Draft YANG Packages March 2022

 "location": ["https://tiny.cc/ietf-yang/\
 "],
 }
],
 "import-only-module": [
 {
 "name": "ietf-routing-types",
 "revision": "2017-12-04",
 "location": ["https://tiny.cc/ietf-yang/\
 ietf-routing-types@2017-12-04.yang"],
 },
 {
 "name": "iana-routing-types",
 "revision": "2017-12-04",
 "location": ["https://tiny.cc/ietf-yang/\
 iana-routing-types@2017-12-04.yang"],
 },
 {
 "name": "ietf-bgp-types",
 "revision": "2018-05-09",
 "location": ["https://tiny.cc/ietf-yang/\
 "],
 },
 {
 "name": "ietf-packet-fields",
 "revision": "2018-11-06",
 "location": ["https://tiny.cc/ietf-yang/\
 "],
 },
 {
 "name": "ietf-ethertypes",
 "revision": "2018-11-06",
 "location": ["https://tiny.cc/ietf-yang/\
 "],
 }
]
 }
 }
 }
 }
 <CODE ENDS>

A.3. Package import conflict resolution example

 This section provides an example of how a package can resolve
 conflicting module revisions from imported packages.

Wilton, et al. Expires 5 September 2022 [Page 48]

Internet-Draft YANG Packages March 2022

 In this example, YANG package ’example-3-pkg’ imports both ’example-
 import-1’ and ’example-import-2’ packages. However, the two imported
 packages implement different revisions of ’example-module-A’ so the
 ’example-3-pkg’ package selects version ’1.2.3’ to resolve the
 conflict. Similarly, for import-only modules, the ’example-3-pkg’
 package does not require both revisions of example-types-module-C to
 be imported, so it indicates that it only imports revision
 ’2018-11-26’ and not ’2018-01-01’.

 {
 "ietf-yang-instance-data:instance-data-set": {
 "name": "example-import-1-pkg",
 "content-schema": {
 "pkg-schema": {
 "name": "ietf-yang-package-defn-pkg",
 "version": "0.1.0"
 }
 },
 "description": "First imported example package",
 "content-data": {
 "ietf-yang-package-instance:yang-package": {
 "name": "example-import-1",
 "version": "1.0.0",
 "reference": "XXX, draft-rwilton-netmod-yang-packages",
 "revision-date": "2018-01-01",
 "module": [
 {
 "name": "example-module-A",
 "revision": "1.0.0"
 },
 {
 "name": "example-module-B",
 "revision": "1.0.0"
 }
],
 "import-only-module": [
 {
 "name": "example-types-module-C",
 "revision": "2018-01-01"
 },
 {
 "name": "example-types-module-D",
 "revision": "2018-01-01"
 }
]
 }
 }

Wilton, et al. Expires 5 September 2022 [Page 49]

Internet-Draft YANG Packages March 2022

 }
 }

 {
 "ietf-yang-instance-data:instance-data-set": {
 "name": "example-import-2-pkg",
 "content-schema": {
 "pkg-schema": {
 "name": "ietf-yang-package-defn-pkg",
 "version": "0.1.0"
 }
 },
 "description": "Second imported example package",
 "content-data": {
 "ietf-yang-package:yang-package": {
 "name": "example-import-2",
 "version": "2.0.0",
 "reference": "XXX, draft-rwilton-netmod-yang-packages",
 "revision-date": "2018-11-26",
 "module": [
 {
 "name": "example-module-A",
 "revision": "1.2.3"
 },
 {
 "name": "example-module-E",
 "revision": "1.1.0"
 }
],
 "import-only-module": [
 {
 "name": "example-types-module-C",
 "revision": "2018-11-26"
 },
 {
 "name": "example-types-module-D",
 "revision": "2018-11-26"
 }
]
 }
 }
 }
 }

 {
 "ietf-yang-instance-data:instance-data-set": {
 "name": "example-3-pkg",
 "content-schema": {

Wilton, et al. Expires 5 September 2022 [Page 50]

Internet-Draft YANG Packages March 2022

 "pkg-schema": {
 "name": "ietf-yang-package-defn-pkg",
 "version": "0.1.0"
 }
 },
 "description": "Importing example package",
 "content-data": {
 "ietf-yang-package:yang-package": {
 "name": "example-3",
 "version": "1.0.0",
 "reference": "XXX, draft-rwilton-netmod-yang-packages",
 "revision-date": "2018-11-26",
 "included-package": [
 {
 "name": "example-import-1",
 "version": "1.0.0"
 },
 {
 "name": "example-import-2",
 "version": "2.0.0"
 }
],
 "module": [
 {
 "name": "example-module-A",
 "revision": "1.2.3"
 }
],
 "import-only-module": [
 {
 "name": "example-types-module-C",
 "revision": "2018-11-26",
 "replaces-revision": ["2018-01-01 "]
 }
]
 }
 }
 }
 }

Appendix B. Possible alternative solutions

 This section briefly describes some alternative solutions. It can be
 removed if this document is adopted as a WG draft.

Wilton, et al. Expires 5 September 2022 [Page 51]

Internet-Draft YANG Packages March 2022

B.1. Using module tags

 Module tags have been suggested as an alternative solution, and
 indeed that can address some of the same requirements as YANG
 packages but not all of them.

 Module tags can be used to group or organize YANG modules. However,
 this raises the question of where this tag information is stored.
 Module tags either require that the YANG module files themselves are
 updated with the module tag information (creating another versioning
 problem), or for the module tag information to be hosted elsewhere,
 perhaps in a centralize YANG Catalog, or in instance data files
 similar to how YANG packages have been defined in this draft.

 One of the principle aims of YANG packages is to be a versioned
 object that defines a precise set of YANG modules versions that work
 together. Module tags cannot meet this aim without an explosion of
 module tags definitions (i.e. a separate module tag must be defined
 for each package version).

 Module tags cannot support the hierachical scheme to construct schema
 that is proposed in this draft.

B.2. Using YANG library

 Another question is whether it is necessary to define new YANG
 modules to define YANG packages, and whether YANG library could just
 be reused in an instance data file. The use of YANG packages offers
 several benefits over just using YANG library:

 1. Packages allow schema to be built in a hierarchical fashion.
 [I-D.ietf-netconf-rfc7895bis] only allows one layer of hierarchy
 (using module sets), and there must be no conflicts between
 module revisions in different module-sets.

 2. Packages can be made available off the box, with a well defined
 unique name, avoiding the need for clients to download, and
 construct/check the entire schema for each datastore. YANG
 library’s use of a ’content-id’ is unique only to the device that
 generated them.

 3. Packages may be versioned using a semantic versioning scheme,
 YANG library does not provide a schema level semantic version
 number.

 4. For a YANG library instance data file to contain the necessary
 information, it probably needs both YANG library and various
 augmentations (e.g. to include each module’s semantic version

Wilton, et al. Expires 5 September 2022 [Page 52]

Internet-Draft YANG Packages March 2022

 number), unless a new version of YANG library is defined
 containing this information. The module definition for a YANG
 package is specified to contain all of the ncessary information
 to solve the problem without augmentations

 5. YANG library is designed to publish information about the
 modules, datastores, and datastore schema used by a server. The
 information required to construct an off box schema is not
 precisely the same, and hence the definitions might deviate from
 each other over time.

Authors’ Addresses

 Robert Wilton (editor)
 Cisco Systems, Inc.
 Email: rwilton@cisco.com

 Reshad Rahman
 Cisco Systems, Inc.
 Email: rrahman@cisco.com

 Joe Clarke
 Cisco Systems, Inc.
 Email: jclarke@cisco.com

 Jason Sterne
 Nokia
 Email: jason.sterne@nokia.com

 Bo Wu (editor)
 Huawei
 Email: lana.wubo@huawei.com

Wilton, et al. Expires 5 September 2022 [Page 53]

Network Working Group P. Andersson, Ed.

Internet-Draft R. Wilton

Updates: 7950 (if approved) Cisco Systems, Inc.

Intended status: Standards Track 11 March 2023

Expires: 12 September 2023

 YANG Schema Comparison

 draft-ietf-netmod-yang-schema-comparison-02

Abstract

 This document specifies an algorithm for comparing two revisions of a

 YANG schema to determine the scope of changes, and a list of changes,

 between the revisions. The output of the algorithm can be used to

 help select an appropriate revision-label or YANG semantic version

 number for a new revision. This document defines a YANG extension

 that provides YANG annotations to help the tool accurately determine

 the scope of changes between two revisions.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 12 September 2023.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the

 document authors. All rights reserved.

Andersson & Wilton Expires 12 September 2023 [Page 1]

Internet-Draft YANG Schema Comparison March 2023

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Key Issues . 3

 1.1. On-wire vs Schema analysis 3

 1.2. error-tags, error messages, and other error statements . 4

 1.3. Comparison on module or full schema (YANG artifact,

 arbitrary blob. Questions 4

 2. Open Issues . 4

 2.1. Override/per-node tags 5

 2.2. Separate rules for config vs state 5

 2.3. Tool/report verbosity 5

 2.4. sub-modules . 5

 2.5. Write algorithm in pseudo code or just describe the rules/

 goals in text? . 5

 2.6. Categories in the report: bc, nbc, potentially-nbc,

 editorial. Allow filtering in the draft without defining

 it? . 5

 2.7. Only for YANG 1.1? 5

 2.8. renamed-from . 5

 3. Tool options . 5

 4. Introduction . 6

 5. Terminology and Conventions 7

 6. Generic YANG schema tree comparison algorithm 8

 6.1. YANG module revision scope extension annotations 9

 6.2. Node compatibility extension statements 9

 7. YANG module comparison algorithm 13

 8. YANG schema comparison algorithms 13

 8.1. Standard YANG schema comparison algorithm 13

 8.2. Filtered YANG schema comparison algorithm 14

 9. Comparison tooling . 15

 10. Module Versioning Extension YANG Modules 15

 11. Contributors . 21

 12. Security Considerations 22

 13. IANA Considerations . 22

 13.1. YANG Module Registrations 22

 14. References . 22

 14.1. Normative References 22

 14.2. Informative References 23

 Authors’ Addresses . 24

Andersson & Wilton Expires 12 September 2023 [Page 2]

Internet-Draft YANG Schema Comparison March 2023

1. Key Issues

 { This section is only to present the current ongoing work, not part

 of the final draft. }

 The contributors have identified several key issues that need

 attention. This section presents selected key issues which have been

 discussed together with suggestions for proposed solution or

 requirements.

1.1. On-wire vs Schema analysis

 Should one algorithm be used or two? The consesus reached was to

 define two separate algorithms, one for on-wire format and one for

 schema.

 On the wire: the focus is on what types of changes affect the client

 requests and server responses for YANG driven protocols, e.g.

 NETCONF, RESTCONF, gNMI. If the same requests and responses occur,

 then there is no "on the wire" impact of the change. For example,

 changing the name of a "choice" has no impact "on the wire". For

 many clients, this level of compatiblity is enough.

 Schema: any changes that affect the YANG schema in an NBC manner

 according to the full rules of

 [I-D.ietf-netmod-yang-module-versioning]. This may be important for

 clients that, for example, automatically generate code using the YANG

 and where the change of a typedef name or a choice name could be

 significant. Also important for other modules that may augment or

 deviate the schema being compared.

 Changes to the module that aren’t semantic should raise that there

 has been editorial changes

 Ordering in the schema, RFC 7950 doesn’t allow reordering; thus an

 NBC change.

 Open Questions:

 Groupings / uses

 typedefs, namespaces, choice names, prefixes, module metadata.

 * typedef renaming (on-wire, same base type etc)

 * Should all editorial (text) diffs be reported?

Andersson & Wilton Expires 12 September 2023 [Page 3]

Internet-Draft YANG Schema Comparison March 2023

 * What about editorial changes that might change semantics, e.g. a

 description of a leaf?

 * Metadata arguments which relies on the formatted input text. E.g

 description, contact (etc), extension (how does the user want to

 tune verbosity level for editorial changes: whitespace, spelling,

 editorial, potentially-nbc?

 * XPath, must, when: don’t normalize XPath expressions

 * presence statements

1.2. error-tags, error messages, and other error statements

 Error tags and messages might be relied on verbatim by users.

 * error-tag: standardized in [RFC6241]

 * error-app-tag: arbitrary text ([RFC6241] but also model)

 * error-message: arbitrary

 Failed must statement, error-message, assumed NBC

 Default behaviour is changes to error tags, messages etc are NBC.

1.3. Comparison on module or full schema (YANG artifact, arbitrary

 blob. Questions

 * features

 * packages vs directories vs libraries vs artifact

 * package specific comparison, package metadata or only looking at

 the modules

 * import only or implemented module

 Filter out comparison for a specific subrtree, path etc. Use case

 for on-wire e.g. yang subscriptions, did the model change fro what is

 subscribed on?

2. Open Issues

 { This section is only to present the current ongoing work, not part

 of the final draft. }

 The following issues have not ben discussed in any wider extent yet.

Andersson & Wilton Expires 12 September 2023 [Page 4]

Internet-Draft YANG Schema Comparison March 2023

2.1. Override/per-node tags

2.2. Separate rules for config vs state

2.3. Tool/report verbosity

 * where to report changes (module, grouping, typedef, uses)

 * output level (conceptual level or exact strings)

 * granularity: error/warning/info level per reported change category

2.4. sub-modules

2.5. Write algorithm in pseudo code or just describe the rules/goals in

 text?

2.6. Categories in the report: bc, nbc, potentially-nbc, editorial.

 Allow filtering in the draft without defining it?

 One option can be to have a tool option that presents the reason

 behind the decision, e.g. --details could be used to explain to the

 user why a certain change was marked as nbc.

 Another option is to present reasoning and analysis in deeper levels

 of verbosity; e.g. one extra level of verbosity, -v, could present

 the reason for categorizing a change nbc, and an additional extra

 level of verbosity, e.g. -vv, could also present the detailed

 analysis the tool made to categorize the change.

2.7. Only for YANG 1.1?

2.8. renamed-from

3. Tool options

 { This section is only to present the current ongoing work, not part

 of the final draft. }

 During the work a list of useful tool options are identified for

 later discussion and publication in an appendix.

 * An option for how to interpret description changes (for the on-

 wire algorithm) by default, e.g. treat them as editorial or nbc.

 * Option: --skip-error-tags, etc

Andersson & Wilton Expires 12 September 2023 [Page 5]

Internet-Draft YANG Schema Comparison March 2023

4. Introduction

 Warning, this is an early (-00) draft with the intention of scoping

 the outline of the solution, hopefully for the WG to back the

 direction of the solution. Refinement of the solution details is

 expected, if this approach is accepted by the WG.

 This document defines a solution to Requirement 2.2 in

 [I-D.ietf-netmod-yang-versioning-reqs]. Complementary documents

 provide a complete solution to the YANG versioning requirements, with

 the overall relationship of the solution drafts described in

 [I-D.ietf-netmod-yang-solutions].

 YANG module ’revision-labels’

 [I-D.ietf-netmod-yang-module-versioning] and the use of YANG semantic

 version numbers [I-D.ietf-netmod-yang-semver] can be used to help

 manage and report changes between revisions of individual YANG

 modules.

 YANG packages [I-D.ietf-netmod-yang-packages] along with YANG

 semantic version numbers can be used to help manage and report

 changes between revisions of YANG schema.

 [I-D.ietf-netmod-yang-module-versioning] and

 [I-D.ietf-netmod-yang-packages] define how to classify changes

 between two module or package revisions, respectively, as backwards

 compatible or non-backwards-compatible.

 [I-D.ietf-netmod-yang-semver] refines the definition, to allow

 backwards compatible changes to be classified as ’minor changes’ or

 ’editorial changes’.

 ’Revision-label’s and YANG semantic version numbers, whilst being

 generally simple and helpful in the mainline revision history case,

 are not sufficient in all scenarios. For example, when comparing two

 revisions/versions on independent revision branches, without a direct

 ancestor relationship between the two revisions/versions. In this

 cases, an algorithmic comparison approach is beneficial.

 In addition, the module revision history’s ’nbc-changes’ extension

 statement, and YANG semantic version numbers, effectively declare the

 worst case scenario. If any non-backwards-compatible changes are

 restricted to only parts of the module/schema that are not used by an

 operator, then the operator is able to upgrade, and effectively treat

 the differences between the two revisions/versions as backwards

 compatible because they are not materially impacted by the non-

 backwards-compatible changes.

Andersson & Wilton Expires 12 September 2023 [Page 6]

Internet-Draft YANG Schema Comparison March 2023

 Hence, this document defines algorithms that can be applied to

 revisions of YANG modules or versions of YANG schema (e.g., as

 represented by YANG packages), to determine the changes, and scope of

 changes between the revisions/versions.

 For many YANG statements, programmatic tooling can determine whether

 the changes between the statements constitutes a backwards-compatible

 or non-backwards-compatible change. However, for some statements, it

 is not feasible for current tooling to determine whether the changes

 are backwards-compatible or not. For example, in the general case,

 tooling cannot determine whether the change in a YANG description

 statement causes a change in the semantics of a YANG data node. If

 the change is to fix a typo or spelling mistake then the change can

 be classified as an editorial backwards-compatible change.

 Conversely, if the change modifies the behavioral specification of

 the data node then the change would need to be classified as either a

 non editorial backwards-compatible change or a non-backwards-

 compatible change. Hence, extension statements are defined to

 annotate a YANG module with additional information to clarify the

 scope of changes in cases that cannot be determined by algorithmic

 comparison.

 Open issues are tracked at https://github.com/netmod-wg/yang-ver-dt/

 issues, tagged with ’schema-comparison’.

5. Terminology and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in BCP

 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

 This document makes use of the following terminology introduced in

 the YANG 1.1 Data Modeling Language [RFC7950]:

 * schema node

 This document uses terminology introduced in the YANG versioning

 requirements document [I-D.ietf-netmod-yang-versioning-reqs].

 This document makes of the following terminology introduced in the

 YANG Packages [I-D.ietf-netmod-yang-packages]:

 * YANG schema

 In addition, this document defines the terminology:

Andersson & Wilton Expires 12 September 2023 [Page 7]

Internet-Draft YANG Schema Comparison March 2023

 * Change scope: Whether a change between two revisions is classified

 as non-backwards-compatible, backwards-compatible, or editorial.

 * Node compatibility statement: An extension statements (e.g. nbc-

 change-at) that can be used to indicate the backwards

 compatibility of individual schema nodes and specific YANG

 statements.

6. Generic YANG schema tree comparison algorithm

 The generic schema comparison algorithm works on any YANG schema.

 This could be a schema associated with an individual YANG module, or

 a YANG schema represented by a set of modules, e.g., specified by a

 YANG package.

 The algorithm performs a recursive tree wise comparison of two

 revisions of a YANG schema, with the following behavior:

 The comparison algorithm primarily acts on the parts of the schema

 defined by unique identifiers.

 Each identifier is qualified with the name of the module that

 defines the identifier.

 Identifiers in different namespaces (as defined in 6.2.1 or RFC

 7950) are compared separately. E.g., ’features’ are compared

 separately from ’identities’.

 Within an identifier namespace, the identifiers are compared

 between the two schema revisions by qualified identifier name.

 The ’renamed-from’ extension allow for a meaningful comparison

 where the name of the identifier has changed between revisions.

 The ’renamed-from’ identifier parameter is only used when an

 identifier in the new schema revision cannot be found in the old

 schema revision.

 YANG extensions, features, identities, typedefs are checked by

 comparing the properties defined by their YANG sub-statements

 between the two revisions.

 YANG groupings, top-level data definition statements, rpcs, and

 notifications are checked by comparing the top level properties

 defined by their direct child YANG sub-statements, and also by

 recursively checking the data definition statements.

 The rules specified in section 3 of

 [I-D.ietf-netmod-yang-module-versioning] determine whether the

 changes are backwards-compatible or non-backwards-compatible.

Andersson & Wilton Expires 12 September 2023 [Page 8]

Internet-Draft YANG Schema Comparison March 2023

 The rules specified in section 3.2 of

 [I-D.ietf-netmod-yang-packages] determine whether backwards-

 compatible changes are ’minor’ or ’editorial’.

 For YANG "description", "must", and "when" statements, the

 "backwards-compatible" and "editorial" extension statements can be

 used to mark instances when the statements have changed in a

 backwards-compatible or editorial way. Since by default the

 comparison algorithm assumes that any changes in these statements

 are non-backwards-compatible. XXX, more info required here, since

 the revisions in the module history probably need to be available

 for this to work in the general branched revisions case.

 Submodules are not relevant for schema comparison purposes, i.e.

 the comparison is performed after submodule resolution has been

 completed.

6.1. YANG module revision scope extension annotations

6.2. Node compatibility extension statements

 In addition to the revision extension statement in

 [I-D.ietf-netmod-yang-module-versioning], this document defines YANG

 extension statements to indicate compatibility information for

 individual schema nodes and certain YANG statements.

 The node compatibility extension statements are applicable to schema

 nodes (e.g. leaf, rpc, choice) as defined in [RFC7950], as well as a

 set of YANG statements (e.g. typedef) as listed in the YANG

 definition of the nbc-change-at extension in the ietf-yang-revisions

 module in this document.

 While the top level non-backwards-compatible-revision statement is

 mandatory when there is a non-backwards-compatible change, the node

 compatibility statements are optional.

 For many YANG statements, programmatic tooling can determine whether

 the changes to a statement between two module revisions constitutes a

 backwards-compatible or non-backwards-compatible change. However,

 for some statements, it may be impractical for tooling to determine

 whether the changes are backwards-compatible or not. For example, in

 the general case, tooling cannot determine whether the change in a

 YANG description statement causes a change in the semantics of a YANG

 schema node. If the change is to fix a typo or spelling mistake then

 the change can be classified as an editorial backwards-compatible

 change. Conversely, if the change modifies the behavioral

 specification of the data node then the change would need to be

Andersson & Wilton Expires 12 September 2023 [Page 9]

Internet-Draft YANG Schema Comparison March 2023

 classified as either a non editorial backwards-compatible change or a

 non-backwards-compatible change. Hence, extension statements are

 defined to annotate a YANG module with additional information to

 clarify the scope of changes in cases that cannot be determined by

 algorithmic comparison.

 Three extensions are defined for schema node compatibility

 information:

 nbc-change-at: Indicates a specific YANG statement had a non-

 backwards-compatible change at a particular module or sub-module

 revision

 bc-change-at: Indicates a specific YANG statement had a backwards-

 compatible change at a particular module or sub-module revision

 editorial-change-at: Indicates a specific YANG statement had an

 editorial change at a particular module or sub-module revision.

 The meaning of an editorial change is as per YANG Semver

 [I-D.ietf-netmod-yang-semver]

 When a node compatibility statement is added to a schema node in a

 sub-module, the revision indicated for the compatibility statement is

 that of the sub-module.

 Adding, modifying or removing any of the node compatibility

 statements is considered to be a BC change.

 The following example illustrates the node compatibility statements:

Andersson & Wilton Expires 12 September 2023 [Page 10]

Internet-Draft YANG Schema Comparison March 2023

 container some-stuff {

 leaf used-to-be-a-string {

 rev:nbc-change-at "3.0.0" {

 description "Changed from a string to a uint32.";

 }

 type uint32;

 }

 leaf fixed-my-description-typo {

 rev:editorial-change-at "2022-06-03";

 type string;

 description "This description used to have a typo."

 }

 list sir-changed-a-lot {

 rev:editorial-change-at "3.0.0";

 rev:bc-change-at "2.3.0";

 rev:bc-change-at "1.2.1_non_compatible";

 description "a list of stuff";

 ordered-by user;

 key "foo";

 leaf foo {

 type string;

 }

 leaf thing {

 type uint8;

 }

 }

 Note that an individual YANG statement may have a backwards-

 compatible change in a revision that is non-backwards-compatible

 (e.g. some other node changed in a non-backwards-compatible fashion

 in that particular revision).

 If changes are ported from one branch of YANG model revisions to

 another branch, care must be taken with any node compatibilty

 statements. A simple copy-n-paste should not be used. The node

 compatibilty statements may incorrectly reference a revision that is

 not in the history of the new revision. Further, the statements

 might not apply depending on what the history is like in that new

 branch (e.g., an NBC change that is ported might not be an NBC change

 in the new branch). Node compatiblity statements should not be

 copied over to the new branch. Instead, the changes should be

 considered as completely new on the new branch, and any compatibility

 information should be generated from scratch.

Andersson & Wilton Expires 12 September 2023 [Page 11]

Internet-Draft YANG Schema Comparison March 2023

 When a node compatibility statement is present, that compatibilty

 statement is the authoritative classification of the backwards

 compatibility of the change to the schema node in the specifed

 revision. This allows a human author to explicitly communicate the

 compatibilty and potentially override the rules specified in this

 document. This is useful in a number of situations including:

 * When a tool may not be able to accurately determine the

 compatibilty of a change. For example, a change in a ’pattern’ or

 ’must’ statement can be difficult for a user or tool to determine

 if it is a compatible change.

 * When a pattern, range or other statement is changed to more

 correctly define the server constraint. An example is correcting

 a pattern that incorrectly included 355.xxx.xxx.xxx as a possible

 IPv4 address to make it only accept up to 255.xxx.xxx.xxx.

 Nothing about the backwards compatibility of a schema node is implied

 by the absence of a node compatibility statement. Hence, the schema

 node definition must be compared between the two revisions to

 determine the backwards compatibility.

 If any nbc-change-at extension statements exists in a module or sub-

 module, then the module or sub-module MUST have non-backwards-

 compatible-revision substatements in each revision statement of the

 module or sub-module history where the revision matches the argument

 of any nbc-change-at statements. If any revision statements are

 removed, then all node compatibiilty statements that reference that

 revision MUST also be removed. Conversely, node compatibilty

 statements MUST NOT be removed unless the associated revision

 statement in the revision history is removed.

 If a node compatiblity statement is added to a grouping, then all

 instances where the grouping is used in the module or by an importing

 module are also impacted by the compatibilty information. Similarly

 for a ’typedef’, all leafs and leaf-lists that use that typedef share

 the specified compatibility classification. A non-backwards-

 compatible change to a typedef or grouping defined in one module that

 is used by an importing module, does not cause the importing module

 to add a non-backwards-compatible-revision statement to the revision

 history. Non-backwards-compatible marking does not carry through

 import statements.

 A node compatibility statement at a leaf, leaf-list, or typedef

 context takes precedence over a node compatibility statement in a

 typedef used by the leaf, leaf-list, or typedef. If multiple

 typedefs with compatibility statements are used by a leaf, leaf-list,

 or typedef (e.g. a union), and there is no compatibility statement at

Andersson & Wilton Expires 12 September 2023 [Page 12]

Internet-Draft YANG Schema Comparison March 2023

 the top leaf, leaf-list, or typedef context, then the order of

 precedence used to classify the compatibility of the top level leaf,

 leaf-list, or typedef is as follows: nbc-change-at, bc-change-at, and

 finally editorial-change-at. That is, the leaf, leaf-list, or

 typedef takes the most impactful change classification of all the

 underlying typedefs.

 Node compatibility statements are not supported on YANG statements

 such as ’pattern’ or ’range’. The compatibility statement instead

 goes against the leaf, leaf-list, or typedef context.

 Node compatibility statements that refer to pre-release revisions of

 a module MUST be removed when a full release revision of the module

 is published.

 Node compatibilty statements SHOULD NOT be used when it isn’t clear

 which change the statement is referring to. For example: If a leaf

 is reordered within a container, a node compatibility statement

 SHOULD NOT be used against the parent container nor against the

 reordered leaf. Similarly, if a leaf is renamed or moved to another

 context without keeping the old leaf present in the model and marked

 obsolete, a node compatibilty statement SHOULD not be used.

7. YANG module comparison algorithm

 The schema comparison algorithm defined in Section 6 can be used to

 compare the schema for individual modules, but with the following

 modifications:

 Changes to the module’s metadata information (i.e. module level

 description, contact, organization, reference) should be checked

 (as potential editorial changes).

 The module’s revision history should be ignored from the

 comparison.

 Changes to augmentations and deviations should be sorted by path

 and compared.

8. YANG schema comparison algorithms

8.1. Standard YANG schema comparison algorithm

 The standard method for comparing two YANG schema versions is to

 individually compare the module revisions for each module implemented

 by the schema using the algorithm defined in Section 7 and then

 aggregating the results together:

Andersson & Wilton Expires 12 September 2023 [Page 13]

Internet-Draft YANG Schema Comparison March 2023

 * If all implemented modules in the schema have only changed in an

 editorial way then the schema is changed in an editorial way

 * If all implemented modules in the schema have only been changed in

 an editorial or backwards-compatible way then the schema is

 changed in a backwards-compatible way

 * Otherwise if any implemented module in the schema has been changed

 in a non-backwards-compatible way then the schema is changed in a

 non-backwards-compatible way.

 The standard schema comparison method is the RECOMMENDED scheme to

 calculate the version number change for new versions of YANG

 packages, because it allows the package version to be calculated

 based on changes to implemented modules revision history (or YANG

 semantic version number if used to identify module revisions).

8.2. Filtered YANG schema comparison algorithm

 Another method to compare YANG schema, that is less likely to report

 inconsequential differences, is to construct full schema trees for

 the two schema versions, directly apply a version of the comparison

 algorithm defined in Section 6. This may be particular useful when

 the schema represents a complete datastore schema for a server

 because it allows various filtered to the comparison algorithm to

 provide a more specific answer about what changes may impact a

 particular client.

 The full schema tree can easily be constructed from a YANG package

 definition, or alternative YANG schema definition.

 Controlled by input parameters to the comparison algorithm, the

 following parts of the schema trees can optionally be filtered during

 the comparison:

 All "grouping" statements can be ignored (after all "use"

 statements have been processed when constructing the schema).

 All module and submodule metadata information (i.e. module level

 description, contact, organization, reference) can be ignored.

 The comparison can be restricted to the set of features that are

 of interest (different sets of features may apply to each schema

 versions).

Andersson & Wilton Expires 12 September 2023 [Page 14]

Internet-Draft YANG Schema Comparison March 2023

 The comparison can be restricted to the subset of data nodes,

 RPCs, notifications and actions, that are of interest (e.g., the

 subset actually used by a particular client), providing a more

 meaningful result.

 The comparison could filter out backwards-compatible ’editorial’

 changes.

 In addition to reporting the overall scope of changes at the schema

 level, the algorithm output can also optionally generate a list of

 specific changes between the two schema, along with the

 classification of those individual changes.

9. Comparison tooling

 ’pyang’ has some support for comparison two module revisions, but

 this is currently limited to a linear module history.

 TODO, it would be helpful if there is reference tooling for schema

 comparison.

10. Module Versioning Extension YANG Modules

 YANG module with extension statements for annotating NBC changes,

 revision label, status description, and importing by version.

 <CODE BEGINS> file "ietf-yang-rev-annotations@2023-02-14.yang"

 module ietf-yang-rev-annotations {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-rev-annotations";

 prefix rev-ext;

 import ietf-yang-revisions {

 prefix rev;

 }

 organization

 "IETF NETMOD (Network Modeling) Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/netmod/>

 WG List: <mailto:netmod@ietf.org>

 Author: Robert Wilton

 <mailto:rwilton@cisco.com>";

 description

 "This YANG 1.1 module contains extensions to annotation to YANG

 module with additional metadata information on the nature of

Andersson & Wilton Expires 12 September 2023 [Page 15]

Internet-Draft YANG Schema Comparison March 2023

 changes between two YANG module revisions.

 XXX, maybe these annotations could also be included in

 ietf-yang-revisions?

 Copyright (c) 2019 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject

 to the license terms contained in, the Simplified BSD License

 set forth in Section 4.c of the IETF Trust’s Legal Provisions

 Relating to IETF Documents

 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see

 the RFC itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL

 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,

 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as

 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,

 they appear in all capitals, as shown here.";

 // RFC Ed.: update the date below with the date of RFC publication

 // and remove this note.

 // RFC Ed.: replace XXXX (inc above) with actual RFC number and

 // remove this note.

 revision 2023-03-11 {

 rev:revision-label 1.0.0-draft-ietf-netmod-yang-schema-comparison-02;

 description

 "Draft revision";

 reference

 "XXXX: YANG Schema Comparison";

 }

 extension nbc-change-at {

 argument revision-date-or-label;

 description

 "A node compatibility statement that identifies a revision

 (by revision-label, or revision date if a revision-label is

 not available) where a non-backwards-compatible change has

 occurred in a particular YANG statement relative to the

 previous revision listed in the revision history.

 The format of the revision-label argument MUST conform to the

 pattern defined for the ietf-yang-revisions

Andersson & Wilton Expires 12 September 2023 [Page 16]

Internet-Draft YANG Schema Comparison March 2023

 revision-date-or-label typedef.

 The following YANG statements MAY have zero or more

 nbc-change-at substatements:

 - all schema node statements (leaf, rpc, choice, etc)

 - ’feature’ statements

 - ’grouping’ statements

 - ’identity’ statements

 - ’must’ statements

 - ’refine’ statements

 - ’typedef’ statements

 - YANG extensions

 Each YANG statement MUST only a have a single node

 compatibilty statement (one of nbc-change-at, bc-change-at,

 or editorial-change-at) for a particular revision. When a node

 has more than one of the node compatibilty statements (for

 different revisions), they must be ordered from most recent

 to least recent.

 An nbc-change-at statement can have 0 or 1 ’description’

 substatements.

 The nbc-change-at statement in not inherited by descendants

 in the schema tree. It only applies to the specific YANG

 statement with which it is associated.

 ";

 reference

 "XXXX: YANG Schema Comparison;

 Section XXX, XXX";

 }

 extension bc-change-at {

 argument revision-date-or-label;

 description

 "A node compatibility statement that identifies a revision

 (by revision-label, or revision date if a revision-label is

 not available) where a backwards-compatible change has

 occurred in a particular YANG statement relative to the

 previous revision listed in the revision history.

 The format of the revision-label argument MUST conform to the

 pattern defined for the ietf-yang-revisions

 revision-date-or-label typedef.

 The following YANG statements MAY have zero or more

Andersson & Wilton Expires 12 September 2023 [Page 17]

Internet-Draft YANG Schema Comparison March 2023

 bc-change-at substatements:

 - all schema node statements (leaf, rpc, choice, etc)

 - ’feature’ statements

 - ’grouping’ statements

 - ’identity’ statements

 - ’must’ statements

 - ’refine’ statements

 - ’typedef’ statements

 - YANG extensions

 Each YANG statement MUST only a have a single node

 compatibilty statement (one of nbc-change-at, bc-change-at,

 or editorial-change-at) for a particular revision. When a node

 has more than one of the node compatibilty statements (for

 different revisions), they must be ordered from most recent

 to least recent.

 An bc-change-at statement can have 0 or 1 ’description’

 substatements.

 The bc-change-at statement in not inherited by descendants

 in the schema tree. It only applies to the specific YANG

 statement with which it is associated.

 ";

 reference

 "XXXX: YANG Schema Comparison;

 Section XXX, XXX";

 }

 extension editorial-change-at {

 argument revision-date-or-label;

 description

 "A node compatibility statement that identifies a revision

 (by revision-label, or revision date if a revision-label is

 not available) where an editorial change has

 occurred in a particular YANG statement relative to the

 previous revision listed in the revision history.

 The format of the revision-label argument MUST conform to the

 pattern defined for the ietf-yang-revisions

 revision-date-or-label typedef.

 The following YANG statements MAY have zero or more

 editorial-change-at substatements:

 - all schema node statements (leaf, rpc, choice, etc)

 - ’feature’ statements

Andersson & Wilton Expires 12 September 2023 [Page 18]

Internet-Draft YANG Schema Comparison March 2023

 - ’grouping’ statements

 - ’identity’ statements

 - ’must’ statements

 - ’refine’ statements

 - ’typedef’ statements

 - YANG extensions

 Each YANG statement MUST only a have a single node

 compatibilty statement (one of nbc-change-at, bc-change-at,

 or editorial-change-at) for a particular revision. When a node

 has more than one of the node compatibilty statements (for

 different revisions), they must be ordered from most recent

 to least recent.

 An editorial-change-at statement can have 0 or 1 ’description’

 substatements.

 The editorial-change-at statement in not inherited by descendants

 in the schema tree. It only applies to the specific YANG

 statement with which it is associated.

 ";

 reference

 "XXXX: YANG Schema Comparison;

 Section XXX, XXX";

 }

 extension backwards-compatible {

 argument revision-date-or-label;

 description

 "Identifies a revision (by revision-label, or revision date if

 a revision-label is not available) where a

 backwards-compatible change has occurred relative to the

 previous revision listed in the revision history.

 The format of the revision-label argument MUST conform to the

 pattern defined for the ietf-yang-revisions

 revision-date-or-label typedef.

 The following YANG statements MAY have zero or more

 ’rev-ext:non-backwards-compatible’ statements:

 description

 must

 when

 Each YANG statement MUST only a have a single

 non-backwards-compatible, backwards-compatible, or editorial

Andersson & Wilton Expires 12 September 2023 [Page 19]

Internet-Draft YANG Schema Comparison March 2023

 extension statement for a particular revision-label, or

 corresponding revision-date.";

 reference

 "XXXX: YANG Schema Comparison;

 Section XXX, XXX";

 }

 extension editorial {

 argument revision-date-or-label;

 description

 "Identifies a revision (by revision-label, or revision date if

 a revision-label is not available) where an editorial change

 has occurred relative to the previous revision listed in the

 revision history.

 The format of the revision-label argument MUST conform to the

 pattern defined for the ietf-yang-revisions

 revision-date-or-label typedef.

 The following YANG statements MAY have zero or more

 ’rev-ext:non-backwards-compatible’ statements:

 description

 Each YANG statement MUST only a have a single

 non-backwards-compatible, backwards-compatible, or editorial

 extension statement for a particular revision-label, or

 corresponding revision-date.";

 reference

 "XXXX: YANG Schema Comparison;

 Section XXX, XXX";

 }

 extension renamed-from {

 argument yang-identifier;

 description

 "Specifies a previous name for this identifier.

 This can be used when comparing schema to optimize handling

 for data nodes that have been renamed rather than naively

 treated them as data nodes that have been deleted and

 recreated.

 The argument ’yang-identifier’ MUST take the form of a YANG

 identifier, as defined in section 6.2 of RFC 7950.

 Any YANG statement that takes a YANG identifier as its

Andersson & Wilton Expires 12 September 2023 [Page 20]

Internet-Draft YANG Schema Comparison March 2023

 argument MAY have a single ’rev-ext:renamed-from’

 sub-statement.

 TODO, we should also facilitate identifiers being moved into

 other modules, e.g. by supporting a module-name qualified

 identifier.";

 reference

 "XXXX: YANG Schema Comparison;

 Section XXX, XXX";

 }

 }

 <CODE ENDS>

11. Contributors

 This document grew out of the YANG module versioning design team that

 started after IETF 101. The following individuals are (or have been)

 members of the design team and have worked on the YANG versioning

 project:

 * Balazs Lengyel

 * Benoit Claise

 * Bo Wu

 * Ebben Aries

 * Jason Sterne

 * Joe Clarke

 * Juergen Schoenwaelder

 * Mahesh Jethanandani

 * Michael Wang

 * Qin Wu

 * Reshad Rahman

 * Rob Wilton

 * Jan Lindblad

 * Per Andersson

Andersson & Wilton Expires 12 September 2023 [Page 21]

Internet-Draft YANG Schema Comparison March 2023

 The ideas for a tooling based comparison of YANG module revisions was

 first described in [I-D.clacla-netmod-yang-model-update]. This

 document extends upon those initial ideas.

12. Security Considerations

 The document does not define any new protocol or data model. There

 are no security impacts.

13. IANA Considerations

13.1. YANG Module Registrations

 The following YANG module is requested to be registered in the "IANA

 Module Names" registry:

 The ietf-yang-rev-annotations module:

 Name: ietf-yang-rev-annotations

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-rev-

 annotations

 Prefix: rev-ext

 Reference: [RFCXXXX]

14. References

14.1. Normative References

 [I-D.ietf-netmod-yang-module-versioning]

 Wilton, R., Rahman, R., Lengyel, B., Clarke, J., and J.

 Sterne, "Updated YANG Module Revision Handling", Work in

 Progress, Internet-Draft, draft-ietf-netmod-yang-module-

 versioning-08, 12 January 2023,

 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-

 yang-module-versioning-08>.

 [I-D.ietf-netmod-yang-packages]

 Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,

 "YANG Packages", Work in Progress, Internet-Draft, draft-

 ietf-netmod-yang-packages-03, 4 March 2022,

 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-

 yang-packages-03>.

Andersson & Wilton Expires 12 September 2023 [Page 22]

Internet-Draft YANG Schema Comparison March 2023

 [I-D.ietf-netmod-yang-semver]

 Clarke, J., Wilton, R., Rahman, R., Lengyel, B., Sterne,

 J., and B. Claise, "YANG Semantic Versioning", Work in

 Progress, Internet-Draft, draft-ietf-netmod-yang-semver-

 10, 17 January 2023,

 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-

 yang-semver-10>.

 [I-D.ietf-netmod-yang-solutions]

 Wilton, R., "YANG Versioning Solution Overview", Work in

 Progress, Internet-Draft, draft-ietf-netmod-yang-

 solutions-01, 2 November 2020,

 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-

 yang-solutions-01>.

 [I-D.ietf-netmod-yang-versioning-reqs]

 Clarke, J., "YANG Module Versioning Requirements", Work in

 Progress, Internet-Draft, draft-ietf-netmod-yang-

 versioning-reqs-07, 10 July 2022,

 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-

 yang-versioning-reqs-07>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,

 and A. Bierman, Ed., "Network Configuration Protocol

 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",

 RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

14.2. Informative References

 [I-D.clacla-netmod-yang-model-update]

 Claise, B., Clarke, J., Lengyel, B., and K. D’Souza, "New

 YANG Module Update Procedure", Work in Progress, Internet-

 Draft, draft-clacla-netmod-yang-model-update-06, 2 July

 2018, <https://datatracker.ietf.org/doc/html/draft-clacla-

 netmod-yang-model-update-06>.

Andersson & Wilton Expires 12 September 2023 [Page 23]

Internet-Draft YANG Schema Comparison March 2023

Authors’ Addresses

 Per Andersson (editor)

 Cisco Systems, Inc.

 Email: perander@cisco.com

 Robert Wilton

 Cisco Systems, Inc.

 Email: rwilton@cisco.com

Andersson & Wilton Expires 12 September 2023 [Page 24]

Network Working Group J. Clarke, Ed.
Internet-Draft R. Wilton, Ed.
Updates: 8407, 8525, 7950 (if approved) Cisco Systems, Inc.
Intended status: Standards Track R. Rahman
Expires: 19 September 2024 Equinix
 B. Lengyel
 Ericsson
 J. Sterne
 Nokia
 B. Claise
 Huawei
 18 March 2024

 YANG Semantic Versioning
 draft-ietf-netmod-yang-semver-15

Abstract

 This document specifies a YANG extension along with guidelines for
 applying an extended set of semantic versioning rules to revisions of
 YANG artifacts (e.g., modules and packages). Additionally, this
 document defines a YANG extension for controlling module imports
 based on these modified semantic versioning rules. This document
 updates RFCs 7950, 8407, and 8525.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 19 September 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Clarke, et al. Expires 19 September 2024 [Page 1]

Internet-Draft YANG Semver March 2024

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 2. Examples of How Versioning Is Applied To YANG Module
 Revisions . 3
 3. Terminology and Conventions 4
 4. YANG Semantic Versioning 4
 4.1. Relationship Between SemVer and YANG Semver 5
 4.2. YANG Semantic Version Extension 5
 4.3. YANG Semver Pattern 5
 4.4. Semantic Versioning Scheme for YANG Artifacts 6
 4.4.1. Branching Limitations with YANG Semver 8
 4.4.2. YANG Semver with submodules 9
 4.4.3. Examples for YANG semantic versions 9
 4.5. YANG Semantic Version Update Rules 11
 4.6. Examples of the YANG Semver Label 13
 4.6.1. Example Module Using YANG Semver 13
 4.6.2. Example of Package Using YANG Semver 14
 5. Import Module by YANG Semantic Version 15
 5.1. The recommended-min-version Extension 15
 5.2. Import by YANG Semantic Version Rules 16
 6. Guidelines for Using Semver During Module Development 17
 6.1. Pre-release Version Precedence 18
 6.2. YANG Semver in IETF Modules 18
 6.2.1. Guidelines for IETF Module Development 19
 6.2.2. Guidelines for Published IETF Modules 19
 7. Updates to ietf-yang-library 19
 7.1. YANG library versioning augmentations 20
 7.1.1. Advertising version 20
 8. YANG Modules . 20
 9. Contributors . 26
 10. Acknowledgments . 27
 11. Security Considerations 27
 12. IANA Considerations . 28
 12.1. YANG Module Registrations 28
 12.2. Guidance for YANG Semver in IANA maintained YANG modules
 and submodules . 29
 13. References . 29
 13.1. Normative References 29

Clarke, et al. Expires 19 September 2024 [Page 2]

Internet-Draft YANG Semver March 2024

 13.2. Informative References 30
 Appendix A. Example IETF Module Development 32
 Authors’ Addresses . 33

1. Introduction

 [I-D.ietf-netmod-yang-module-versioning] puts forth a number of
 concepts relating to modified rules for updating YANG modules and
 submodules, a means to signal when a new revision of a module or
 submodule has non-backwards-compatible (NBC) changes compared to its
 previous revision, and a scheme that uses the revision history as a
 lineage for determining from where a specific revision of a YANG
 module or submodule is derived.

 This document defines a YANG extension that tags a YANG artifact
 (i.e., YANG modules, YANG submodules, and YANG packages
 [I-D.ietf-netmod-yang-packages]) with a version identifier that
 adheres to extended semantic versioning rules [SemVer]. The goal
 being to add a human readable version identifier that provides
 compatibility information for the YANG artifact without needing to
 compare or parse its body. The version identifier and rules defined
 herein represent the RECOMMENDED approach to apply versioning to IETF
 YANG artifacts. This document defines augmentations to ietf-yang-
 library to reflect the version of YANG modules within the module-set
 data.

 Note that a specific revision of the SemVer 2.0.0 specification is
 referenced here (from June 19, 2020) to provide an immutable version.
 This is because the 2.0.0 version of the specification has changed
 over time without any change to the semantic version itself. In some
 cases the text has changed in non-backwards-compatible ways.

2. Examples of How Versioning Is Applied To YANG Module Revisions

 The following diagram illustrates how the branched revision history
 and the YANG Semver version extension statement could be used:

 Example YANG module with branched revision history.

Clarke, et al. Expires 19 September 2024 [Page 3]

Internet-Draft YANG Semver March 2024

 Module revision date Example version identifier
 2019-01-01 <- 1.0.0
 |
 2019-02-01 <- 2.0.0
 | \
 2019-03-01 \ <- 3.0.0
 | \
 | 2019-04-01 <- 2.1.0
 | |
 2019-05-01 | <- 3.1.0
 |
 2019-06-01 <- 2.2.0

 Figure 1

 The tree diagram above illustrates how an example module’s revision
 history might evolve, over time.

3. Terminology and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Additionally, this document uses the following terminology:

 * YANG artifact: YANG modules, YANG submodules, and YANG packages
 [I-D.ietf-netmod-yang-packages] are examples of YANG artifacts for
 the purposes of this document.

 * SemVer: A version string that corresponds to the rules defined in
 [SemVer]. This specific camel-case notation is the one used by
 the SemVer 2.0.0 website and used within this document to
 distinguish between YANG Semver.

 * YANG Semver: A version identifier that is consistent with the
 extended set of semantic versioning rules, based on [SemVer],
 defined within this document.

4. YANG Semantic Versioning

 This section defines YANG Semantic Versioning, explains how it is
 used with YANG artifacts, and describes the rules associated with
 changing an artifact’s semantic version when its contents are
 updated.

Clarke, et al. Expires 19 September 2024 [Page 4]

Internet-Draft YANG Semver March 2024

4.1. Relationship Between SemVer and YANG Semver

 [SemVer] is completely compatible with YANG Semver in that a SemVer
 semantic version number is legal according to the YANG Semver rules
 (though the inverse is not necessarily true). YANG Semver is a
 superset of the SemVer rules, and allows for limited branching within
 YANG artifacts. If no branching occurs within a YANG artifact (i.e.,
 you do not use the compatibility modifiers described below), the YANG
 Semver version label will appear as a SemVer version number.

4.2. YANG Semantic Version Extension

 The ietf-yang-semver module defines a "version" extension -- a
 substatement to a module or submodule’s "revision" statement -- that
 takes a YANG semantic version as its argument and specified the
 version for the given module or submodule. The syntax for the YANG
 semantic version is defined in a typedef in the same module and
 described below.

4.3. YANG Semver Pattern

 YANG artifacts that employ semantic versioning as defined in this
 document MUST use a version identifier that corresponds to the
 following pattern: ’X.Y.Z_COMPAT’. Where:

 * X, Y and Z are mandatory non-negative integers that are each less
 than or equal to 2147483647 (i.e., the maximum signed 32-bit
 integer value) and MUST NOT contain leading zeroes,

 * The ’.’ is a literal period (ASCII character 0x2e),

 * The ’_’ is an optional single literal underscore (ASCII character
 0x5f) and MUST only be present if the following COMPAT element is
 included,

 * COMPAT, if specified, MUST be either the literal string
 "compatible" or the literal string "non_compatible".

Clarke, et al. Expires 19 September 2024 [Page 5]

Internet-Draft YANG Semver March 2024

 Additionally, [SemVer] defines two specific types of metadata that
 may be appended to a semantic version string. Pre-release metadata
 MAY be appended to a YANG Semver string after a trailing ’-’
 character. Build metadata MAY be appended after a trailing ’+’
 character. If both pre-release and build metadata are present, then
 build metadata MUST follow pre-release metadata. While build
 metadata MUST be ignored when comparing YANG semantic versions, pre-
 release metadata MUST be used during module and submodule development
 as specified in Section 6. Both pre-release and build metadata are
 allowed in order to support all the [SemVer] rules. Thus, a version
 lineage that follows strict [SemVer] rules is allowed for a YANG
 artifact.

 The ietf-yang-semver module included in this document defines an
 extension to apply a YANG Semver identifier to a YANG artifact as
 well as a typedef that formally specifies the syntax of the YANG
 Semver.

4.4. Semantic Versioning Scheme for YANG Artifacts

 This document defines the YANG semantic versioning scheme that is
 used for YANG artifacts. The versioning identifier has the following
 properties:

 * The YANG semantic versioning scheme is extended from version 2.0.0
 of the semantic versioning scheme defined at semver.org [SemVer]
 to cover the additional requirements for the management of YANG
 artifact lifecycles that cannot be addressed using the semver.org
 2.0.0 versioning scheme alone.

 * Unlike the [SemVer] versioning scheme, the YANG semantic
 versioning scheme supports updates to older versions of YANG
 artifacts, to allow for bug fixes and enhancements to artifact
 versions that are not the latest. However, it does not provide
 for the unlimited branching and updating of older revisions which
 are documented by the general rules in
 [I-D.ietf-netmod-yang-module-versioning].

 * YANG artifacts that use the [SemVer] versioning scheme are fully
 compatible with implementations that understand the YANG semantic
 versioning scheme defined in this document.

 * If updates are always restricted to the latest revision of the
 artifact only, then the version identifiers used by the YANG
 semantic versioning scheme are exactly the same as those defined
 by the [SemVer] versioning scheme.

Clarke, et al. Expires 19 September 2024 [Page 6]

Internet-Draft YANG Semver March 2024

 Every YANG module and submodule versioned using the YANG semantic
 versioning scheme specifies the module’s or submodule’s semantic
 version as the argument to the ’ys:version’ statement.

 Because the rules put forth in
 [I-D.ietf-netmod-yang-module-versioning] are designed to work well
 with existing versions of YANG and allow for artifact authors to
 migrate to this scheme, it is not expected that all revisions of a
 given YANG artifact will have a semantic version identifier. For
 example, the first revision of a module or submodule may have been
 produced before this scheme was available.

 YANG packages that make use of this YANG Semver will reflect that in
 the package metadata.

 As stated above, the YANG semantic version is expressed as a string
 of the form: ’X.Y.Z_COMPAT’.

 * ’X’ is the MAJOR version. Changes in the MAJOR version number
 indicate changes that are non-backwards-compatible to versions
 with a lower MAJOR version number.

 * ’Y’ is the MINOR version. Changes in the MINOR version number
 indicate changes that are backwards-compatible to versions with
 the same MAJOR version number, but a lower MINOR version number
 and no "_compatible" or "_non_compatible" modifier.

 * ’Z’ is the PATCH version. Changes in the PATCH version number can
 indicate an editorial change to the YANG artifact. In conjunction
 with the ’_COMPAT’ modifier (see below) changes to ’Z’ may
 indicate a more substantive module change. An editorial change is
 defined to be a change in the YANG artifact’s content that does
 not affect the semantic meaning or functionality provided by the
 artifact in any way. Some examples include correcting a spelling
 mistake in the description of a leaf within a YANG module or
 submodule, non-significant whitespace changes (e.g., realigning
 description statements or changing indentation), or changes to
 YANG comments. Note: restructuring how a module uses, or does not
 use, submodules is treated as an editorial level change on the
 condition that there is no change in the module’s semantic
 behavior due to the restructuring.

 * ’_COMPAT’ is an additional modifier, unique to YANG Semver (i.e.,
 not valid in [SemVer]), that indicates backwards-compatible, or
 non-backwards-compatible changes relative to versions with the
 same MAJOR and MINOR version numbers, but lower PATCH version
 number, depending on what form modifier ’_COMPAT’ takes:

Clarke, et al. Expires 19 September 2024 [Page 7]

Internet-Draft YANG Semver March 2024

 - If the modifier string is absent, the change represents an
 editorial change.

 - If, however, the modifier string is present, the meaning is
 described below:

 - "_compatible" - the change represents a backwards-compatible
 change

 - "_non_compatible" - the change represents a non-backwards-
 compatible change

 The ’_COMPAT’ modifier string is "sticky". Once a revision of a
 module has a modifier in the version identifier, then all subsequent
 modules in that branch (i.e., those with the same X.Y version digits)
 will also have a modifier. The modifier can change from
 "_compatible" to "_non_compatible" in a subsequent version, but the
 modifier MUST NOT change from "_non_compatible" to "_compatible" and
 MUST NOT be removed. The persistence of the "_non_compatible"
 modifier ensures that comparisons of versions do not give the false
 impression of compatibility between two potentially non-compatible
 versions. If "_non_compatible" was removed, for example between
 versions "3.3.2_non_compatible" and "3.3.3" (where "3.3.3" was simply
 an editorial change), then comparing versions "3.3.3" to "3.0.0"
 would look like they are backwards compatible when they are not
 (since "3.3.2_non_compatible" was on the same MAJOR.MINOR branch and
 introduced a non-backwards-compatible change).

 The YANG artifact name and YANG semantic version uniquely identify a
 revision of said artifact. There MUST NOT be multiple instances of a
 YANG artifact definition with the same name and YANG semantic version
 but different content (and in the case of modules and submodules,
 different revision dates).

 There MUST NOT be multiple versions of a YANG artifact that have the
 same MAJOR, MINOR and PATCH version numbers, but different patch
 modifier strings. E.g., artifact version "1.2.3_non_compatible" MUST
 NOT be defined if artifact version "1.2.3" has already been defined.

4.4.1. Branching Limitations with YANG Semver

 YANG artifacts that use the YANG Semver version scheme MUST ensure
 that two artifacts with the same MAJOR version number and no
 _compatible or _non_compatible modifiers are backwards compatible.
 Therefore, certain branching schemes cannot be used with YANG Semver.
 For example, the following branching approach using the following
 YANG Semver identifiers is not supported:

Clarke, et al. Expires 19 September 2024 [Page 8]

Internet-Draft YANG Semver March 2024

 3.5.0 -- 3.6.0 (add leaf foo)
 |
 |
 3.20.0 (added leaf bar)

 In this case, given only the YANG Semver identifiers 3.6.0 and
 3.20.0, one would assume that 3.20.0 is backwards compatible with
 3.6.0. But in the illegal example above, 3.20.0 is not backwards
 compatible with 3.6.0 since 3.20.0 does not contain the leaf foo.

 Note that this type of branching, where two versions on the same
 branch have different backwards compatible changes is allowed in
 [I-D.ietf-netmod-yang-module-versioning].

4.4.2. YANG Semver with submodules

 YANG Semver MAY be used to version submodules. Submodule version are
 separate of any version on the including module, but if a submodule
 has changed, then the version of the including module MUST also be
 updated.

 The rules for determining the version change of a submodule are the
 same as those defined in Section 4.3 and Section 4.4 as applied to
 YANG modules, except they only apply to the part of the module schema
 defined within the submodule’s file.

 One interesting case is moving definitions from one submodule to
 another in a way that does not change the resulting schema of the
 including module. In this case:

 1. The including module has editorial changes

 2. The submodule with the schema definition removed has non-
 backwards-compatible changes

 3. The submodule with the schema definitions added has backwards-
 compatible changes

 Note that the meaning of a submodule may change drastically despite
 having no changes in content or revision due to changes in other
 submodules belonging to the same module (e.g. groupings and typedefs
 declared in one submodule and used in another).

4.4.3. Examples for YANG semantic versions

 The following diagram and explanation illustrate how YANG semantic
 versions work.

Clarke, et al. Expires 19 September 2024 [Page 9]

Internet-Draft YANG Semver March 2024

 YANG Semantic versions for an example module:

 0.1.0
 |
 0.2.0
 |
 1.0.0
 |
 1.1.0 -> 1.1.1_compatible -> 1.1.2_non_compatible
 |
 1.2.0 -> 1.2.1_non_compatible -> 1.2.2_non_compatible
 | \
 2.0.0 \
 | \--> 1.3.0 -> 1.3.1_non_compatible
 3.0.0 |
 | 1.4.0
 3.1.0

 The tree diagram above illustrates how the version history might
 evolve for an example module. The tree diagram only shows the
 branching relationships between the versions. It does not describe
 the chronology of the versions (i.e. when in time each version was
 published relative to the other versions).

 The following description lists an example of what the chronological
 order of the versions could look like, from oldest version to newest:

 0.1.0 - first pre-release module version

 0.2.0 - second pre-release module version (with NBC changes)

 1.0.0 - first release (may have NBC changes from 0.2.0)

 1.1.0 - added new functionality, leaf "foo" (BC)

 1.2.0 - added new functionality, leaf "baz" (BC)

 2.0.0 - change existing model for performance reasons, e.g. re-key
 list (NBC)

 1.3.0 - improve existing functionality, added leaf "foo-64" (BC)

 1.1.1_compatible - backport "foo-64" leaf to 1.1.x to avoid
 implementing "baz" from 1.2.0. This revision was created after
 1.2.0 otherwise it may have been released as 1.2.0. (BC)

 3.0.0 - NBC bugfix, rename "baz" to "bar"; also add new BC leaf
 "wibble"; (NBC)

Clarke, et al. Expires 19 September 2024 [Page 10]

Internet-Draft YANG Semver March 2024

 1.3.1_non_compatible - backport NBC fix, rename "baz" to "bar"
 (NBC)

 1.2.1_non_compatible - backport NBC fix, rename "baz" to "bar"
 (NBC)

 1.1.2_non_compatible - NBC point bug fix, not required in 2.0.0
 due to model changes (NBC)

 1.4.0 - introduce new leaf "ghoti" (BC)

 3.1.0 - introduce new leaf "wobble" (BC)

 1.2.2_non_compatible - backport "wibble". This is a BC change but
 "non_compatible" modifier is sticky. (BC)

4.5. YANG Semantic Version Update Rules

 When a new version of an artifact is produced, then the following
 rules define how the YANG semantic version for the new artifact is
 calculated, based on the changes between the two artifact versions,
 and the YANG semantic version of the original artifact from which the
 changes are derived.

 The following four rules specify the RECOMMENDED, and REQUIRED
 minimum, update to a YANG semantic version:

 1. If an artifact is being updated in a non-backwards-compatible
 way, then the artifact version
 "X.Y.Z[_compatible|_non_compatible]" SHOULD be updated to
 "X+1.0.0" unless that version has already been used for this
 artifact but with different content, in which case the artifact
 version "X.Y.Z+1_non_compatible" SHOULD be used instead.

 2. If an artifact is being updated in a backwards-compatible way,
 then the next version number depends on the format of the current
 version number:

 i "X.Y.Z" - the artifact version SHOULD be updated to
 "X.Y+1.0", unless that version has already been used for
 this artifact but with different content, when the artifact
 version SHOULD be updated to "X.Y.Z+1_compatible" instead.

 ii "X.Y.Z_compatible" - the artifact version SHOULD be updated
 to "X.Y.Z+1_compatible".

 iii "X.Y.Z_non_compatible" - the artifact version SHOULD be
 updated to "X.Y.Z+1_non_compatible".

Clarke, et al. Expires 19 September 2024 [Page 11]

Internet-Draft YANG Semver March 2024

 3. If an artifact is being updated in an editorial way, then the
 next version identifier depends on the format of the current
 version identifier:

 i "X.Y.Z" - the artifact version SHOULD be updated to
 "X.Y.Z+1"

 ii "X.Y.Z_compatible" - the artifact version SHOULD be updated
 to "X.Y.Z+1_compatible".

 iii "X.Y.Z_non_compatible" - the artifact version SHOULD be
 updated to "X.Y.Z+1_non_compatible".

 4. YANG artifact semantic version identifiers beginning with 0,
 i.e., "0.X.Y", are regarded as pre-release definitions and need
 not follow the rules above. Either the MINOR or PATCH version
 numbers may be updated, regardless of whether the changes are
 non-backwards-compatible, backwards-compatible, or editorial.
 See Section 6 for more details on using this notation during
 module and submodule development.

 5. Additional pre-release rules for modules that have had at least
 one release are specified in Section 6.

 Although artifacts SHOULD be updated according to the rules above,
 which specify the recommended (and minimum required) update to the
 version identifier, the following rules MAY be applied when choosing
 a new version identifier:

 1. An artifact author MAY update the version identifier with a more
 significant update than described by the rules above. For
 example, an artifact could be given a new MAJOR version number
 (i.e., X+1.0.0), even though no non-backwards-compatible changes
 have occurred, or an artifact could be given a new MINOR version
 number (i.e., X.Y+1.0) even if the changes were only editorial.

 2. An artifact author MAY skip versions. That is, an artifact’s
 version history could be 1.0.0, 1.1.0, and 1.3.0 where 1.2.0 is
 skipped.

 Although YANG Semver always indicates when a non-backwards-
 compatible, or backwards-compatible change may have occurred to a
 YANG artifact, it does not guarantee that such a change has occurred,
 or that consumers of that YANG artifact will be impacted by the
 change. Hence, tooling, e.g.,
 [I-D.ietf-netmod-yang-schema-comparison], also plays an important
 role for comparing YANG artifacts and calculating the likely impact
 from changes.

Clarke, et al. Expires 19 September 2024 [Page 12]

Internet-Draft YANG Semver March 2024

 [I-D.ietf-netmod-yang-module-versioning] defines the "rev:non-
 backwards-compatible" extension statement to indicate where non-
 backwards-compatible changes have occurred in the module revision
 history. If a revision entry in a module’s revision history includes
 the "rev:non-backwards-compatible" statement then that MUST be
 reflected in any YANG semantic version associated with that revision.
 However, the reverse does not necessarily hold, i.e., if the MAJOR
 version has been incremented it does not necessarily mean that a
 "rev:non-backwards-compatible" statement would be present.

4.6. Examples of the YANG Semver Label

4.6.1. Example Module Using YANG Semver

 Below is a sample YANG module that uses YANG Semver based on the
 rules defined in this document.

 module example-versioned-module {
 yang-version 1.1;
 namespace "urn:example:versioned:module";
 prefix "exvermod";

 import ietf-yang-revisions { prefix "rev"; }
 import ietf-yang-semver { prefix "ys"; }

 description
 "to be completed";

 revision 2017-08-30 {
 description "Backport ’wibble’ leaf";
 ys:version 1.2.2_non_compatible;
 }

 revision 2017-07-30 {
 description "Rename ’baz’ to ’bar’";
 ys:version 1.2.1_non_compatible;
 rev:non-backwards-compatible;
 }

 revision 2017-04-20 {
 description "Add new functionality, leaf ’baz’";
 ys:version 1.2.0;
 }

 revision 2017-04-03 {
 description "Add new functionality, leaf ’foo’";
 ys:version 1.1.0;
 }

Clarke, et al. Expires 19 September 2024 [Page 13]

Internet-Draft YANG Semver March 2024

 revision 2017-02-07 {
 description "First release version.";
 ys:version 1.0.0;
 }

 // Note: YANG Semver rules do not apply to 0.X.Y labels.
 // The following pre-release revision statements would not
 // appear in any final published version of a module. They
 // are removed when the final version is published.
 // During the pre-release phase of development, only a
 // single one of these revision statements would appear

 // revision 2017-01-30 {
 // description "NBC changes to initial revision";
 // ys:version 0.2.0;
 // rev:non-backwards-compatible; // optional
 // // (theoretically no
 // // ’previous released version’)
 // }

 // revision 2017-01-26 {
 // description "Initial module version";
 // ys:version 0.1.0;
 // }

 //YANG module definition starts here
 }

4.6.2. Example of Package Using YANG Semver

 Below is an example YANG package that uses the YANG Semver version
 identifier based on the rules defined in this document. Note: ’\’
 line wrapping per [RFC8792].

Clarke, et al. Expires 19 September 2024 [Page 14]

Internet-Draft YANG Semver March 2024

 {
 "ietf-yang-instance-data:instance-data-set": {
 "name": "example-yang-pkg",
 "content-schema": {
 "module": "ietf-yang-packages@2022-03-04"
 },
 "timestamp": "2022-12-06T17:00:38Z",
 "description": ["Example of a Package \
 using YANG Semver"],
 "content-data": {
 "ietf-yang-packages:packages": {
 "package": [
 {
 "name": "example-yang-pkg",
 "version": "1.3.1",
 ...
 }
]
 }
 }
 }
 }

 Figure 2

5. Import Module by YANG Semantic Version

 [I-D.ietf-netmod-yang-module-versioning] allows for imports to be
 done based on the earliest supported date and later using the
 rev:recommended-min-date extension. This section defines a similar
 extension for controlling import by YANG semantic version, as well as
 the rules for how imports are resolved.

5.1. The recommended-min-version Extension

 The ietf-yang-semver module defines a "recommended-min-version"
 extension -- a substatement to the "import" statement -- that takes a
 YANG semantic version as its argument and specifies that the minimum
 version of the associated module being imported SHOULD be greater
 than or equal to the specified value. The specific conditions for
 determining if a module’s version is greater than or equal is defined
 in Section 5.2 below. Multiple recommended-min-version statements
 MAY be specified. If there are multiple recommended-min-version
 statements, they are treated as a logical OR. Removing recommended-
 min-version statements is considered a backwards compatible change.
 An example use is:

Clarke, et al. Expires 19 September 2024 [Page 15]

Internet-Draft YANG Semver March 2024

 import example-module {
 ys:recommended-min-version 3.0.0;
 }

5.2. Import by YANG Semantic Version Rules

 A module to be imported is considered as meeting the recommended
 minimum version criteria if it meets one of the following
 conditions::

 1. Has the exact MAJOR, MINOR, PATCH and "_compatible" or
 "_non_compatible" modifiers as in the recommend-min-version
 value.

 2. Has the same MAJOR and MINOR version numbers and a greater PATCH
 number. In this case, "_compatible" and "_non_compatible
 modifiers" are ignored.

 3. Has the same MAJOR version number and greater MINOR number. In
 this case the PATCH number and the "_compatible" and
 "_non_compatible" modifiers are ignored.

 4. Has a greater MAJOR version number. In this case MINOR and PATCH
 numbers and "_compatible" and "_non_compatible" modifiers are
 ignored.

 If the recommended-min-version is specified as 3.1.0, the following
 examples would be satisfy that recommend-min-version:

 3.1.0 (by condition 1 above)

 3.1.1 (by condition 2 above)

 3.2.0 (by condition 3 above)

 4.1.2 (by condition 4 above)

 3.1.1_compatible (by condition 2 above, noting that modifiers are
 ignored)

 3.1.2_non_compatible (by condition 2 above, noting that modifiers
 are ignored)

 If an import by recommended-min-version cannot locate a module with a
 version that is viable according to the conditions above, the YANG
 compiler SHOULD emit a warning, and then continue to resolve the
 import based on established [RFC7950] rules.

Clarke, et al. Expires 19 September 2024 [Page 16]

Internet-Draft YANG Semver March 2024

6. Guidelines for Using Semver During Module Development

 This section and the IETF-specific sub-section below provides YANG
 Semver-specific guidelines to consider when developing new YANG
 modules. As such this section updates [RFC8407].

 Development of a brand new YANG module or submodule outside of the
 IETF that uses the YANG Semver versioning scheme SHOULD begin with a
 0 for the MAJOR version component. This allows the module or
 submodule to disregard strict SemVer rules with respect to non-
 backwards-compatible changes during its initial development.
 However, module or submodule developers MAY choose to use the SemVer
 pre-release syntax instead with a 1 for the MAJOR version number.
 For example, an initial module or submodule version might be either
 0.0.1 or 1.0.0-alpha.1. If the authors choose to use the 0 MAJOR
 version number scheme, they MAY switch to the pre-release scheme with
 a MAJOR version number of 1 when the module or submodule is nearing
 initial release (e.g., a module’s or submodule’s version may
 transition from 0.3.0 to 1.0.0-beta.1 to indicate it is more mature
 and ready for testing).

 When using pre-release notation, the format MUST include at least one
 alphabetic component and MUST end with a ’.’ or ’-’ and then one or
 more digits. These alphanumeric components will be used when
 deciding pre-release precedence. The following are examples of valid
 pre-release versions:

 1.0.0-alpha.1

 1.0.0-alpha.3

 2.1.0-beta.42

 3.0.0-202007.rc.1

 When developing a new revision of an existing module or submodule
 using the YANG Semver versioning scheme, the intended target semantic
 version MUST be used along with pre-release notation. For example,
 if a released module or submodule which has a current version of
 1.0.0 is being modified with the intent to make non-backwards-
 compatible changes, the first development MAJOR version component
 must be 2 with some pre-release notation such as -alpha.1, making the
 version 2.0.0-alpha.1. That said, every publicly available release
 of a module or submodule MUST have a unique YANG Semver identifier
 (where a publicly available release is one that could be implemented
 by a vendor or consumed by an end user). Therefore, it may be
 prudent to include the year or year and month development began
 (e.g., 2.0.0-201907-alpha.1). As a module or submodule undergoes

Clarke, et al. Expires 19 September 2024 [Page 17]

Internet-Draft YANG Semver March 2024

 development, it is possible that the original intent changes. For
 example, a 1.0.0 version of a module or submodule that was destined
 to become 2.0.0 after a development cycle may have had a scope change
 such that the final version has no non-backwards-compatible changes
 and becomes 1.1.0 instead. This change is acceptable to make during
 the development phase so long as pre-release notation is present in
 both versions (e.g., 2.0.0-alpha.3 becomes 1.1.0-alpha.4). However,
 on the next development cycle (after 1.1.0 is released), if again the
 new target release is 2.0.0, new pre-release components must be used
 such that every version for a given module or submodule MUST be
 unique throughout its entire lifecycle (e.g., the first pre-release
 version might be 2.0.0-202005-alpha.1 if keeping the same year and
 month notation mentioned above).

6.1. Pre-release Version Precedence

 As a module or submodule is developed, the scope of the work may
 change. That is, while a released module or submodule with version
 1.0.0 is initially intended to become 2.0.0 in its next released
 version, the scope of work may change such that the final version is
 1.1.0. During the development cycle, the pre-release versions could
 move from 2.0.0-some-pre-release-tag to 1.1.0-some-pre-release-tag.
 This downwards changing of version identifiers makes it difficult to
 evaluate semantic version rules between pre-release versions.
 However, taken independently, each pre-release version can be
 compared to the previously ratified version (e.g., 1.1.0-some-pre-
 release-tag and 2.0.0-some-pre-release-tag can each be compared to
 1.0.0). Module and submodule developers SHOULD maintain only one
 revision statement in a pre-released module or submodule that
 reflects the latest revision. IETF authors MAY choose to include an
 appendix in the associated draft to track overall changes to the
 module or submodule.

6.2. YANG Semver in IETF Modules

 All published IETF modules and submodules MUST use YANG semantic
 versions in their revisions.

 Development of a new module or submodule within the IETF SHOULD begin
 with the 0 MAJOR number scheme as described above. When revising an
 existing IETF module or submodule, the version MUST use the target
 (i.e., intended) MAJOR and MINOR version components with a 0 PATCH
 version number. If the intended RFC release will be non-backwards-
 compatible with the current RFC release, the MINOR version number
 MUST be 0.

Clarke, et al. Expires 19 September 2024 [Page 18]

Internet-Draft YANG Semver March 2024

6.2.1. Guidelines for IETF Module Development

 All IETF modules and submodules in development MUST use the whole
 document name as a pre-release version identifier, including the
 current document revision. For example, if a module or submodule
 which is currently released at version 1.0.0 is being revised to
 include non-backwards-compatible changes in draft-user-netmod-foo,
 its development versions MUST include 2.0.0-draft-user-netmod-foo
 followed by the document’s revision (e.g., 2.0.0-draft-user-netmod-
 foo-02). This will ensure each pre-release version is unique across
 the lifecycle of the module or submodule. Even when using the 0
 MAJOR version for initial module or submodule development (where
 MINOR and PATCH can change), appending the draft name as a pre-
 release component helps to ensure uniqueness when there are perhaps
 multiple, parallel efforts creating the same module or submodule.

 Some draft revisions may not include an update to the YANG modules or
 submodules contained in the draft. In that case, those modules or
 submodules that are not updated do not not require a change to their
 versions. Updates to the YANG Semver version MUST only be done when
 the revision of the module changes.

 See Appendix A for a detailed example of IETF pre-release versions.

6.2.2. Guidelines for Published IETF Modules

 For IETF YANG modules and submodules that have already been
 published, versions MUST be retroactively applied to all existing
 revisions when the next new revision is created, starting at version
 "1.0.0" for the initial published revision, and then incrementing
 according to the YANG Semver version rules specified in Section 4.5.
 For example, if a module or submodule started out in the pre-NMDA
 ([RFC8342]) world, and then had NMDA support added without removing
 any legacy "state" branches -- and you are looking to add additional
 new features -- a sensible choice for the target YANG Semver would be
 1.2.0 (since 1.0.0 would have been the initial, pre-NMDA release, and
 1.1.0 would have been the NMDA revision).

7. Updates to ietf-yang-library

 This document updates YANG 1.1 [RFC7950] and YANG library [RFC8525]
 to clarify how ambiguous module imports are resolved. It also
 defines the YANG module, ietf-yang-library-semver, that augments YANG
 library [RFC8525] with a version leaf for modules and submodules.

Clarke, et al. Expires 19 September 2024 [Page 19]

Internet-Draft YANG Semver March 2024

7.1. YANG library versioning augmentations

 The "ietf-yang-library-semver" YANG module has the following
 structure (using the notation defined in [RFC8340]):

 module: ietf-yang-library-semver

 augment /yanglib:yang-library/yanglib:module-set/yanglib:module:
 +--ro version? ys:version
 augment /yanglib:yang-library/yanglib:module-set/yanglib:module
 /yanglib:submodule:
 +--ro version? ys:version
 augment /yanglib:yang-library/yanglib:module-set
 /yanglib:import-only-module:
 +--ro version? ys:version
 augment /yanglib:yang-library/yanglib:module-set
 /yanglib:import-only-module/yanglib:submodule:
 +--ro version? ys:version

 Figure 3

7.1.1. Advertising version

 The ietf-yang-library-semver YANG module augments the "module" and
 "submodule" lists in ietf-yang-library with "version" leafs to
 optionally declare the version identifier associated with each module
 and submodule.

8. YANG Modules

 This YANG module contains the typedef for the YANG semantic version
 and the identity to signal its use.

 <CODE BEGINS> file "ietf-yang-semver@2024-03-01.yang"
 module ietf-yang-semver {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-semver";
 prefix ys;

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Joe Clarke
 <mailto:jclarke@cisco.com>

Clarke, et al. Expires 19 September 2024 [Page 20]

Internet-Draft YANG Semver March 2024

 Author: Robert Wilton
 <mailto:rwilton@cisco.com>
 Author: Reshad Rahman
 <mailto:reshad@yahoo.com>
 Author: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>
 Author: Jason Sterne
 <mailto:jason.sterne@nokia.com>
 Author: Benoit Claise
 <mailto:benoit.claise@huawei.com>";
 description
 "This module provides type and grouping definitions for YANG
 packages.

 Copyright (c) 2024 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX with actual RFC number and remove this
 // note.
 // RFC Ed. update the ys:version to "1.0.0".

 revision 2024-03-01 {
 ys:version "1.0.0-draft-ietf-netmod-yang-semver-13";
 description
 "Initial revision";
 reference
 "RFC XXXX: YANG Semantic Versioning.";
 }

 /*

Clarke, et al. Expires 19 September 2024 [Page 21]

Internet-Draft YANG Semver March 2024

 * Extensions
 */

 extension version {
 argument yang-semantic-version;
 description
 "The version extension can be used to provide an additional
 identifier associated with a module or submodule
 revision.

 The format of the version extension argument MUST conform
 to the ’version’ typedef defined in this module.

 The statement MUST only be a substatement of the revision
 statement. Zero or one version statements per parent
 statement are allowed. No substatements for this extension
 have been standardized.

 Versions MUST be unique amongst all revisions of a
 module or submodule.

 Adding a version is a backwards-compatible
 change. Changing or removing an existing version in
 the revision history is a non-backwards-compatible
 change, because it could impact any references to that
 version.";
 reference
 "XXXX: YANG Semantic Versioning;
 Section 3.2, YANG Semantic Version Extension";
 }

 extension recommended-min-version {
 argument yang-semantic-version;
 description
 "Recommends the versions of the module that may be imported to
 one that is greater than or equal to the specified version.

 The format of the recommended-min-version extension argument
 MUST conform to the ’version’ typedef defined in this module.

 The statement MUST only be a substatement of the import
 statement. Zero, one or more ’recommended-min-version’
 statements per parent statement are allowed. No
 substatements for this extension have been
 standardized.

 If specified multiple times, then any module revision that
 satisfies at least one of the ’recommended-min-version’

Clarke, et al. Expires 19 September 2024 [Page 22]

Internet-Draft YANG Semver March 2024

 statements is an acceptable recommended version for
 import.

 A particular version of an imported module adheres to an
 import’s ’recommended-min-version’ extension statement if one
 of the following conditions are met:

 * Has the same MAJOR and MINOR version numbers and same or
 greater PATCH number.
 * Has the same MAJOR version number and greater MINOR number.
 In this case the PATCH number is ignored.
 * Has a greater MAJOR version number. In this case
 MINOR and PATCH numbers are ignored.

 Adding, removing or updating a ’recommended-min-version’
 statement to an import is a backwards-compatible change.";
 reference
 "XXXX: YANG Semantic Versioning; Section 4,
 Import Module by Semantic Version";
 }

 /*
 * Typedefs
 */

 typedef version {
 type string {
 pattern ’[0-9]+[.][0-9]+[.][0-9]+(_(non_)?compatible)?’
 + ’(-[A-Za-z0-9.-]+[.-][0-9]+)?([+][A-Za-z0-9.-]+)?’;
 }
 description
 "Represents a YANG semantic version. The rules governing the
 use of this version identifier are defined in the
 reference for this typedef.";
 reference
 "RFC XXXX: YANG Semantic Versioning.";
 }
 }
 <CODE ENDS>

 This YANG module contains the augmentations to the ietf-yang-library.

 <CODE BEGINS> file "ietf-yang-library-semver@2024-03-02.yang"
 module ietf-yang-library-semver {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-yang-library-semver";
 prefix yl-semver;

Clarke, et al. Expires 19 September 2024 [Page 23]

Internet-Draft YANG Semver March 2024

 import ietf-yang-semver {
 prefix ys;
 reference
 "XXXX: YANG Semantic Versioning";
 }
 import ietf-yang-library {
 prefix yanglib;
 reference
 "RFC 8525: YANG Library";
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Joe Clarke
 <mailto:jclarke@cisco.com>

 Author: Reshad Rahman
 <mailto:reshad@yahoo.com>

 Author: Robert Wilton
 <mailto:rwilton@cisco.com>

 Author: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>

 Author: Jason Sterne
 <mailto:jason.sterne@nokia.com>";
 description
 "This module contains augmentations to YANG Library to add module
 and submodule level version identifiers.

 Copyright (c) 2024 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.

Clarke, et al. Expires 19 September 2024 [Page 24]

Internet-Draft YANG Semver March 2024

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX (including in the imports above) with
 // actual RFC number and remove this note.
 // RFC Ed.: please replace ys:version with 1.0.0 and
 // remove this note.

 revision 2024-03-02 {
 ys:version "1.0.0-draft-ietf-netmod-yang-semver-14";
 description
 "Initial revision";
 reference
 "XXXX: YANG Semantic Versioning";
 }

 // library 1.0 modules-state is not augmented with version

 augment "/yanglib:yang-library/yanglib:module-set/yanglib:module" {
 description
 "Add a version to module information";
 leaf version {
 type ys:version;
 description
 "The version associated with this module revision.
 The value MUST match the version value in the
 specific revision of the module loaded in this module-set.";
 reference
 "XXXX: YANG Semantic Versioning;
 Section 7.1.1, Advertising version";
 }
 }

 augment
 "/yanglib:yang-library/yanglib:module-set/yanglib:module/"
 + "yanglib:submodule" {
 description
 "Add a version to submodule information";
 leaf version {
 type ys:version;
 description
 "The version associated with this submodule revision.
 The value MUST match the version value in the

Clarke, et al. Expires 19 September 2024 [Page 25]

Internet-Draft YANG Semver March 2024

 specific revision of the submodule included by the module
 loaded in this module-set.";
 reference
 "XXXX: YANG Semantic Versioning;
 Section 7.1.1, Advertising version";
 }
 }

 augment "/yanglib:yang-library/yanglib:module-set/"
 + "yanglib:import-only-module" {
 description
 "Add a version to module information";
 leaf version {
 type ys:version;
 description
 "The version associated with this module revision.
 The value MUST match the version value in the
 specific revision of the module included in this
 module-set.";
 reference
 "XXXX: YANG Semantic Versioning;
 Section 7.1.1, Advertising version";
 }
 }

 augment "/yanglib:yang-library/yanglib:module-set/"
 + "yanglib:import-only-module/yanglib:submodule" {
 description
 "Add a version to submodule information";
 leaf version {
 type ys:version;
 description
 "The version associated with this submodule revision.
 The value MUST match the version value in the specific
 revision of the submodule included by the import-only-module
 loaded in this module-set.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 7.1.1, Advertising version";
 }
 }
 }
 <CODE ENDS>

9. Contributors

 The following people made substantial contributions to this document:

Clarke, et al. Expires 19 September 2024 [Page 26]

Internet-Draft YANG Semver March 2024

 Bo Wu
 lana.wubo@huawei.com

 Jan Lindblad
 jlindbla@cisco.com

 Figure 4

10. Acknowledgments

 This document grew out of the YANG module versioning design team that
 started after IETF 101. The team consists of the following members
 whom have worked on the YANG versioning project: Balazs Lengyel,
 Benoit Claise, Bo Wu, Ebben Aries, Jan Lindblad, Jason Sterne, Joe
 Clarke, Juergen Schoenwaelder, Mahesh Jethanandani, Michael
 (Wangzitao), Per Andersson, Qin Wu, Reshad Rahman, Tom Hill, and Rob
 Wilton.

 The initial revision of this document was refactored and built upon
 [I-D.clacla-netmod-yang-model-update]. We would like the thank Kevin
 D’Souza for his initial work in this problem space.

 Discussions on the use of SemVer for YANG versioning has been held
 with authors of the OpenConfig YANG models based on their own
 [openconfigsemver]. We would like thank both Anees Shaikh and Rob
 Shakir for their input into this problem space.

 We would also like to thank Joseph Donahue from the SemVer.org
 project for his input on SemVer use and overall document readability.

11. Security Considerations

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The NETCONF access control model [RFC8341] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

Clarke, et al. Expires 19 September 2024 [Page 27]

Internet-Draft YANG Semver March 2024

 That said, the YANG module in this document does not define any
 writeable nodes. The extensions defined are only used to document
 YANG artifacts.

12. IANA Considerations

12.1. YANG Module Registrations

 This document requests IANA to register URIs in the "IETF XML
 Registry" [RFC3688]. Following the format in RFC 3688, the following
 registrations are requested.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-semver

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-library-semver

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

 The following YANG modules are requested to be registered in the
 "IANA Module Names" [RFC6020]. Following the format in RFC 6020, the
 following registrations are requested:

 The ietf-yang-semver module:

 Name: ietf-yang-semver

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-semver

 Prefix: ys

 Reference: [RFCXXXX]

 The ietf-yang-library-semver module:

 Name: ietf-yang-library-semver

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-library-
 semver

 Prefix: yl-semver

 Reference: [RFCXXXX]

Clarke, et al. Expires 19 September 2024 [Page 28]

Internet-Draft YANG Semver March 2024

12.2. Guidance for YANG Semver in IANA maintained YANG modules and
 submodules

 Note for IANA (to be removed by the RFC editor): Please check that
 the registries and IANA YANG modules and submodules are referenced in
 the appropriate way.

 IANA is responsible for maintaining and versioning some YANG modules
 and submodules, e.g., iana-if-types.yang [IfTypeYang] and iana-
 routing-types.yang [RoutingTypesYang].

 In addition to following the rules specified in the IANA
 Considerations section of [I-D.ietf-netmod-yang-module-versioning],
 IANA maintained YANG modules and submodules MUST also include a YANG
 Semver version identifier for all new revisions, as defined in
 Section 4.

 The YANG Semver version associated with the new revision MUST follow
 the rules defined in Section 4.5.

 Note: For IANA maintained YANG modules and submodules that have
 already been published, versions MUST be retroactively applied to all
 existing revisions when the next new revision is created, starting at
 version "1.0.0" for the initial published revision, and then
 incrementing according to the YANG Semver rules specified in
 Section 4.5.

 Most changes to IANA maintained YANG modules and submodules are
 expected to be backwards-compatible changes and classified as MINOR
 version changes. The PATCH version may be incremented instead when
 only editorial changes are made, and the MAJOR version would be
 incremented if non-backwards-compatible changes are made.

 Given that IANA maintained YANG modules are versioned with a linear
 history, it is anticipated that it should not be necessary to use the
 "_compatible" or "_non_compatible" modifiers to the "Z_COMPAT"
 version element.

13. References

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Clarke, et al. Expires 19 September 2024 [Page 29]

Internet-Draft YANG Semver March 2024

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", RFC 8525,
 DOI 10.17487/RFC8525, March 2019,
 <https://www.rfc-editor.org/info/rfc8525>.

 [I-D.ietf-netmod-yang-module-versioning]
 Wilton, R., Rahman, R., Lengyel, B., Clarke, J., and J.
 Sterne, "Updated YANG Module Revision Handling", Work in
 Progress, Internet-Draft, draft-ietf-netmod-yang-module-
 versioning-11, 1 March 2024,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
 yang-module-versioning-11>.

13.2. Informative References

 [I-D.clacla-netmod-yang-model-update]
 Claise, B., Clarke, J., Lengyel, B., and K. D’Souza, "New
 YANG Module Update Procedure", Work in Progress, Internet-
 Draft, draft-clacla-netmod-yang-model-update-06, 2 July
 2018, <https://datatracker.ietf.org/doc/html/draft-clacla-
 netmod-yang-model-update-06>.

Clarke, et al. Expires 19 September 2024 [Page 30]

Internet-Draft YANG Semver March 2024

 [I-D.ietf-netmod-yang-packages]
 Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,
 "YANG Packages", Work in Progress, Internet-Draft, draft-
 ietf-netmod-yang-packages-03, 4 March 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
 yang-packages-03>.

 [I-D.ietf-netmod-yang-schema-comparison]
 Andersson, P. and R. Wilton, "YANG Schema Comparison",
 Work in Progress, Internet-Draft, draft-ietf-netmod-yang-
 schema-comparison-02, 14 March 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
 yang-schema-comparison-02>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

Clarke, et al. Expires 19 September 2024 [Page 31]

Internet-Draft YANG Semver March 2024

 [RFC8792] Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,
 "Handling Long Lines in Content of Internet-Drafts and
 RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,
 <https://www.rfc-editor.org/info/rfc8792>.

 [openconfigsemver]
 "Semantic Versioning for Openconfig Models",
 <http://www.openconfig.net/docs/semver/>.

 [SemVer] "Semantic Versioning 2.0.0 (text from June 19, 2020)",
 <https://github.com/semver/semver/
 blob/8b2e8eec394948632957639dfa99fc7ec6286911/semver.md>.

 [IfTypeYang]
 "iana-if-type YANG Module",
 <https://www.iana.org/assignments/iana-if-type/iana-if-
 type.xhtml>.

 [RoutingTypesYang]
 "iana-routing-types YANG Module",
 <https://www.iana.org/assignments/iana-routing-types/iana-
 routing-types.xhtml>.

Appendix A. Example IETF Module Development

 Assume a new YANG module is being developed in the netmod working
 group in the IETF. Initially, this module is being developed in an
 individual internet draft, draft-jdoe-netmod-example-module. The
 following represents the initial version tree (i.e., value of
 ys:version) of the module as it’s being initially developed.

 Version lineage for initial module development:

 0.0.1-draft-jdoe-netmod-example-module-00
 |
 0.1.0-draft-jdoe-netmod-example-module-01
 |
 0.2.0-draft-jdoe-netmod-example-module-02
 |
 0.2.1-draft-jdoe-netmod-example-module-03

 At this point, development stabilizes, and the workgroup adopts the
 draft. Thus now the draft becomes draft-ietf-netmod-example-module.
 The initial pre-release lineage continues as follows.

 Continued version progression after adoption:

Clarke, et al. Expires 19 September 2024 [Page 32]

Internet-Draft YANG Semver March 2024

 1.0.0-draft-ietf-netmod-example-module-00
 |
 1.0.0-draft-ietf-netmod-example-module-01
 |
 1.0.0-draft-ietf-netmod-example-module-02

 At this point, the draft is standardized and becomes RFC12345 and the
 YANG module version becomes 1.0.0.

 A time later, the module needs to be revised to add additional
 capabilities. Development will be done in a backwards-compatible
 way. Two new individual drafts are proposed to go about adding the
 capabilities in different ways: draft-jdoe-netmod-exmod-enhancements
 and draft-asmith-netmod-exmod-changes. These are initially developed
 in parallel with the following versions.

 Parallel development for next module revision (track 1):

 1.1.0-draft-jdoe-netmod-exmod-enhancements-00
 |
 1.1.0-draft-jdoe-netmod-exmod-enhancements-01

 In parallel with (track 2):

 1.1.0-draft-asmith-netmod-exmod-changes-00
 |
 1.1.0-draft-asmith-netmod-exmod-changes-01

 At this point, the WG decides to merge some aspects of both and adopt
 the work in asmith’s draft as draft-ietf-netmod-exmod-changes. A
 single version progression continues.

 1.1.0-draft-ietf-netmod-exmod-changes-00
 |
 1.1.0-draft-ietf-netmod-exmod-changes-01
 |
 1.1.0-draft-ietf-netmod-exmod-changes-02
 |
 1.1.0-draft-ietf-netmod-exmod-changes-03

 The draft is standardized, and the new module version becomes 1.1.0.

Authors’ Addresses

Clarke, et al. Expires 19 September 2024 [Page 33]

Internet-Draft YANG Semver March 2024

 Joe Clarke (editor)
 Cisco Systems, Inc.
 7200-12 Kit Creek Rd
 Research Triangle Park, North Carolina
 United States of America
 Phone: +1-919-392-2867
 Email: jclarke@cisco.com

 Robert Wilton (editor)
 Cisco Systems, Inc.
 Email: rwilton@cisco.com

 Reshad Rahman
 Equinix
 Email: reshad@yahoo.com

 Balazs Lengyel
 Ericsson
 1117 Budapest
 Magyar Tudosok Korutja
 Hungary
 Phone: +36-70-330-7909
 Email: balazs.lengyel@ericsson.com

 Jason Sterne
 Nokia
 Email: jason.sterne@nokia.com

 Benoit Claise
 Huawei
 Email: benoit.claise@huawei.com

Clarke, et al. Expires 19 September 2024 [Page 34]

NETCONF C. Feng

Internet-Draft Q. Ma

Intended status: Standards Track Huawei

Expires: December 24, 2021 C. Xie

 China Telecom

 June 22, 2021

 System Configuration Data Handling Behavior

 draft-ma-netconf-with-system-02

Abstract

 This document defines an optional "system" datastore to allow clients

 populate the system configuration into running datastore in the

 device. It also defines a capability-based extension to the NETCONF

 protocol that helps the NETCONF client identify how system

 configuration are processed by the server.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 24, 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

Feng, et al. Expires December 24, 2021 [Page 1]

Internet-Draft System Configuration Data Handling June 2021

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2

 1.1. Terminology . 3

 1.2. Requirements Language 4

 2. System Configuration Datastore 4

 2.1. Life Cycle of the system configuration management 4

 2.2. "Factory-Reset" RPC Impact on System Configuration

 Datastore . 5

 3. System Configuration data handling Basic Modes 5

 3.1. ’auto-populate’ Initialization During Reboot 6

 3.2. ’auto-populate’ <edit-config> Behavior towards <running> 6

 3.3. ’no-populate’ <edit-config> Behavior towards <running> . 7

 4. Retrieval of System Configuration Data 7

 5. With System Capability 7

 5.1. Overview . 7

 5.2. Capability Identifier 8

 5.3. Modifications to Existing Operations 8

 5.3.1. <get-data> Operations 8

 5.3.2. <edit-config> Operation 8

 6. YANG Module . 8

 7. IANA Considerations . 10

 8. Security Considerations 10

 9. Acknowledgements . 11

 10. References . 11

 10.1. Normative References 11

 10.2. Informative References 11

 Appendix A. Changes between Revisions 12

 Appendix B. Open Issues tracking 12

 Authors’ Addresses . 12

1. Introduction

 The NETCONF protocol [RFC6241] defines ways to read configuration and

 state data from a NETCONF server.

 In some cases, a client-configured data item refers to a system

 generated data item (e.g., the auto-created interfaces "eth1"), which

 is only present in the <operational> datastore [RFC8342]. In order

 for it being referenced, the duplicated system configured data item

 needs to be retrieved from <operational> and overridden by the

 client.

Feng, et al. Expires December 24, 2021 [Page 2]

Internet-Draft System Configuration Data Handling June 2021

 In some other cases, a system generated configured data item is in

 the when/must statement, the similar operation should also be

 performed to make sure a successful validation, which is cumbersome.

 Furthmore, when the system generated data item gets updated, there is

 no way to synchronize the update into <running> and the client can’t

 detect the update automatically.

 This document defines a "system" datastore to hold all the

 configurations provided by the system itself. It also defines a

 capability-based extension to the NETCONF protocol that allows the

 configuration synchronization between <system> and <running> both

 automatically and explicitly.

1.1. Terminology

 This document assumes that the reader is familiar with the contents

 of [RFC6241], [RFC7950], [RFC8342], [RFC8407], and [RFC8525] and uses

 terminologies from those documents.

 The following terms are defined in this document as follows:

 System configuration: Configuration that is provided by the system

 itself [RFC8342].

 System configuration datastore: A configuration datastore holding

 the complete configuration provided by the system iteself. This

 datastore is referred to as "<system>".

 physical resource independent system configuration: When the device

 is powered on, the pre-provisioned configuration will be activated

 and provided, irrespective of physical resource present or not,

 sometimes the pre-provisioned configuration will be provided

 without must/when statement constraint (e.g., loop back interface

 activation), sometimes not, e.g., only provided when a special

 functionality is enabled.

 Physical resource dependent system configuration: When the device is

 powered on and the physical resource is present (e.g., insert

 interface card), the system will automatically detect it and load

 pre-provisioned configuration; when the physical resource is not

 present(remove interface card), the system configuration will be

 automatically cleared.

Feng, et al. Expires December 24, 2021 [Page 3]

Internet-Draft System Configuration Data Handling June 2021

1.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in BCP

 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

2. System Configuration Datastore

 Following guidelines for defining Datastores in the appendix A of

 [RFC8342], this document introduces a new datastore resource named

 ’system’ that represents the system configuration.

 o Name: "system"

 o YANG modules: all

 o YANG nodes: all "config true" data nodes

 o Management operations: The content of the datastore is set by the

 server in an implementation dependent manner. The content can not

 be changed by management operations via NETCONF, RESTCONF,the CLI,

 etc unless specialized, dedicated operations are provided. The

 datastore can be read using the standard NETCONF/RESTCONF protocol

 operations.

 o Origin: This document does not define any new origin identity when

 it interacts with <operational> datastore. The system origin

 Metadata Annotation is used to indicate the origin of a data item.

 o Protocols: RESTCONF, NETCONF and other management protocol.

 o Defining YANG module: "ietf-netconf-with-system".

 The datastore content is usually defined by the device vendor. It is

 static at most of time and MAY change e.g., depending on external

 factors like HW available or during device upgrade. <system> does not

 persist across reboots. It will be automatically loaded when the

 device is powered on or the physical resource is present.

2.1. Life Cycle of the system configuration management

 When the device is powered on, physical resource independent system

 configuration will be created in <system> automatically by the system

 if there is no when/must statement constraint associated with system

 configuration data or provided only when a special functionality is

 enabled.

Feng, et al. Expires December 24, 2021 [Page 4]

Internet-Draft System Configuration Data Handling June 2021

 When the device is powered on and the physical resource is inserted

 into the device, physical resource dependent system configuration

 will be automatically loaded into <system>;

 When the physical resource is removed from the device, the physical

 resource dependent system configuration will be automatically removed

 from <system>;

2.2. "Factory-Reset" RPC Impact on System Configuration Datastore

 [RFC8808]defines a "factory-reset" RPC to allow clients to reset a

 server back to its factory-default condition. Upon receiving the

 RPC, all supported conventional read-write configuration

 datastore(i.e.,<running>, <startup> and <candidate>) are reset to the

 contents of <factory-default>. <system> should also immediately reset

 to its factory default state. That’s to say, any system

 configurations generated due to system upgrading or client-enabled

 functionality should be discarded. System configuration which is

 generated at the first time when it boots after being shipped from

 factory should be retained.

3. System Configuration data handling Basic Modes

 Not all server implementations treat system configuration data in the

 same way. Instead of forcing a single implementation strategy, this

 document allows a server advertise a particular style of system

 configuration data handling, and the client can adjust behavior

 accordingly.

 This document specifies two standard system configuration handling

 basic modes that a server implementor may choose from:

 o auto-populate

 o no-populate

 A server that uses the ’auto-populate’ basic mode MUST automatically

 o Update <running> with the system configuration change, after the

 "system" configuration has been altered as a consequence of a plug

 and play operation or device powering on operation. However the

 configurations in <running> can not be removed automatically when

 configuration data nodes in <system> is deleted since those

 configurations in <running> are likely to have already been

 modified or referenced.

 o The system configuration doesn’t need to be explicitly set by the

 client first before the system configuration needs to be updated

Feng, et al. Expires December 24, 2021 [Page 5]

Internet-Draft System Configuration Data Handling June 2021

 with client set configuration or referenced by client set

 configuration.

 A server that uses the ’no-populate’ basic mode

 o MUST not update <running> with the system configuration.

 o The system configuration MUST be explicitly set by the client

 first before the system configuration needs to be updated with

 client set configuration or referenced by client set

 configuration.

3.1. ’auto-populate’ Initialization During Reboot

 The contents of <system> don’t have to be persist across reboots,

 even in the presence of non-volatile storage.

 For the NETCONF server which implements the <factory-default>

 datastore [RFC8808], it may load <factory-default> at the first time

 when it boots after being shipped from factory or reset to its

 factory default condition. Then it’s just like each normal boot

 time, the device generates system configurations and saves into

 <system>. Then the device loads the saved startup configuration(if

 <startup> exists) into <running>. Lastly, the device loads <system>

 into <running>. If there exists any conflict, the configuration in

 the <running> should succeed.

3.2. ’auto-populate’ <edit-config> Behavior towards <running>

 For a data node that is loaded from <system> automatically, the

 server MUST consider it to exist.

 o A valid ’create’ operation attribute for a data node that is

 loaded from <system> and set by the server MUST fail with a ’data-

 exists’ error-tag;

 o A valid ’delete’ operation attribute for a data node that is

 loaded from <system> and set by the server MUST succeed. The

 deleted system configuration MUST be reloaded into <running>

 immediately if the system configuration is still present in the

 <system>;

 o A valid ’merge’ operation attribute for a data node that is loaded

 from <system> and set by the server MUST succeed.

Feng, et al. Expires December 24, 2021 [Page 6]

Internet-Draft System Configuration Data Handling June 2021

3.3. ’no-populate’ <edit-config> Behavior towards <running>

 The server MUST NOT consider any system configuration data node to

 exist in <running> configuration datastore, except those explicitly

 set by the client.

 o A valid ’create’ operation attribute for a data node that is set

 by the server MUST succeed since the system configuration data is

 not present in the <running> configuration datastore.

 o A valid ’merge’ operation attribute for a data node that is set by

 the server MUST succeed even though the name of data node in

 <system> is same as name of data node explicitly set by the

 client.

 o A valid ’delete’ operation attribute for a data node that is set

 by the client MUST succeed even though the name of data node in

 <system> is same as name of data node explicitly set by the

 client. A valid ’delete’ operation attribute for a data node that

 is not explicitly set by the client MUST fail since system

 configuration is not loaded into <running>.

4. Retrieval of System Configuration Data

 TBD

5. With System Capability

5.1. Overview

 The :with-system capability indicates which system-data-handling

 basic mode is supported by the server. These basic modes allow a

 NETCONF client to control whether system configuration data is

 returned by the server. Sending of system configuration data is

 controlled for each individual operation separately.

 A NETCONF server implementing the :with-system capability:

 o MUST indicate its basic mode behavior by including the ’basic-

 mode’ parameter in the capability URI;

 o MUST support the YANG module defined in Section 6 for the system

 configuration data handling mode indicated by the ’basic-mode’

 parameter.

Feng, et al. Expires December 24, 2021 [Page 7]

Internet-Draft System Configuration Data Handling June 2021

5.2. Capability Identifier

 urn:ietf:params:netconf:capability:with-system:1.0

 The identifier MUST have a parameter: "basic-mode". This indicates

 how the server will treat system configuration data, as defined in

 Section 3. The allowed values of this parameter are ’auto-populate’,

 and ’no-populate’, as defined in Section 3.

 urn:ietf:params:netconf:capability:with-system:1.0?basic-mode=no-

 populate

5.3. Modifications to Existing Operations

5.3.1. <get-data> Operations

 As defined in Section 6, retrieval of system configuration in

 <system> can be used through <get-data> operation with the

 "datastore" parameter set to "system".

5.3.2. <edit-config> Operation

 The <edit-config> operation has several editing modes. The ’create’,

 and ’delete’ editing operations are affected by the system

 configuration data handling basic mode. The other enumeration values

 for the NETCONF operation attribute are not affected.

 If the operation attribute contains the value ’create’, and the data

 node already exists in the target configuration datastore, then the

 server MUST return an <rpc-error> response with a ’invalid-value’

 error-tag.

 If the client sets a data node that is explicitly set by the server,

 the server MUST accept the request if it is valid. The server MUST

 keep or discard the new value based on its system configuration data

 handling basic mode.

6. YANG Module

 This YANG module uses the "datastore" identity [RFC8342]. Every

 NETCONF server which supports :with-system capability MUST implement

 this YANG module.

 <CODE BEGINS> file="ietf-netconf-with-system@2021-05-14.yang"

 module ietf-netconf-with-system {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-with-system";

 prefix ncws;

Feng, et al. Expires December 24, 2021 [Page 8]

Internet-Draft System Configuration Data Handling June 2021

 import ietf-datastores {

 prefix ds;

 reference

 "RFC 8342: Network Management Datastore Architecture(NMDA)";

 }

 organization

 "IETF NETCONF (Network Configuration Protocol) Working Group";

 contact

 "WG Web: <http://tools.ietf.org/wg/netconf/>

 WG List: <mailto:netconf@ietf.org>

 WG Chair:

 Editor:

 ";

 description

 "This module defines an extension to the NETCONF protocol

 that allows the NETCONF client to control how system configuration

 data are handled by the server in particular NETCONF operations.

 Copyright (c) 2010 IETF Trust and the persons identified as

 the document authors. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject

 to the license terms contained in, the Simplified BSD License

 set forth in Section 4.c of the IETF Trust’s Legal Provisions

 Relating to IETF Documents

 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see

 the RFC itself for full legal notices.";

 // RFC Ed.: replace XXXX with actual RFC number and remove this note

 revision 2021-05-14 {

 description

 "Initial version.";

 reference

 "RFC XXXX: With-system capability for NETCONF";

 }

 feature system-datastore {

 description

 "Indicates that the system configuration is available as a datastore.";

 }

 identity system {

 if-feature "system-datastore";

Feng, et al. Expires December 24, 2021 [Page 9]

Internet-Draft System Configuration Data Handling June 2021

 base ds:datastore;

 description

 "This read-only datastore contains the system configuration for the

 device that will be loaded into <running> automatically in the

 "auto-populate" basic mode.";

 }

 }

 <CODE ENDS>

7. IANA Considerations

 This document registers the following capability identifier URN in

 the ’Network Configuration Protocol Capability URNs registry’:

 urn:ietf:params:netconf:capability:with-system:1.0

 This document registers two XML namespace URNs in the ’IETF XML

 registry’, following the format defined in [RFC3688].

 URI: urn:ietf:params:xml:ns:netconf:system:1.0

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-with-system

 Registrant Contact: The NETCONF WG of the IETF.

 XML: N/A, the requested URIs are XML namespaces.

 This document registers one module name in the ’YANG Module Names’

 registry, defined in [RFC6020] .

 name: ietf-netconf-with-system

 prefix: ncws

 namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-with-system

 RFC: XXXX // RFC Ed.: replace XXXX and remove this comment

8. Security Considerations

 The YANG module specified in this document defines a schema for data

 that is designed to be accessed via network management protocols such

 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer

 is the secure transport layer, and the mandatory-to-implement secure

 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer

 is HTTPS, and the mandatory-to-implement secure transport is TLS

 [RFC8446].

 The Network Configuration Access Control Model (NACM) [RFC8341]

 provides the means to restrict access for particular NETCONF or

 RESTCONF users to a preconfigured subset of all available NETCONF or

 RESTCONF protocol operations and content.

Feng, et al. Expires December 24, 2021 [Page 10]

Internet-Draft System Configuration Data Handling June 2021

9. Acknowledgements

 Thanks to Robert Wilton, Kent Watsen, Balazs Lengyel, Timothy Carey

 for reviewing, and providing important input to, this document.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

10.2. Informative References

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,

 and A. Bierman, Ed., "Network Configuration Protocol

 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",

 RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,

 and R. Wilton, "Network Management Datastore Architecture

 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,

 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of

 Documents Containing YANG Data Models", BCP 216, RFC 8407,

 DOI 10.17487/RFC8407, October 2018,

 <https://www.rfc-editor.org/info/rfc8407>.

 [RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,

 and R. Wilton, "YANG Library", RFC 8525,

 DOI 10.17487/RFC8525, March 2019,

 <https://www.rfc-editor.org/info/rfc8525>.

 [RFC8808] Wu, Q., Lengyel, B., and Y. Niu, "A YANG Data Model for

 Factory Default Settings", RFC 8808, DOI 10.17487/RFC8808,

 August 2020, <https://www.rfc-editor.org/info/rfc8808>.

Feng, et al. Expires December 24, 2021 [Page 11]

Internet-Draft System Configuration Data Handling June 2021

Appendix A. Changes between Revisions

 v01 - v02

 o Remove System configuration data retrieval behavior in the

 mainbody and examples in the appendix.

 o Remove <get> operation and <get-config> operation extension from

 the YANG data model.

 o Change basic mode values into auto-populate, no-populate.

 o Consider <factory-default> to work together with <system>.

Appendix B. Open Issues tracking

 o Do we need to define RPC to allow the server loads <system>

 configuration data into <running>?

 o Can we introduce better terminology?

 o Should we define a standard operation of system configuration

 retrieval?

Authors’ Addresses

 Feng Chong

 Huawei

 101 Software Avenue, Yuhua District

 Nanjing, Jiangsu 210012

 China

 Email: frank.fengchong@huawei.com

 Qiufang Ma

 Huawei

 101 Software Avenue, Yuhua District

 Nanjing, Jiangsu 210012

 China

 Email: maqiufang1@huawei.com

Feng, et al. Expires December 24, 2021 [Page 12]

Internet-Draft System Configuration Data Handling June 2021

 Chongfeng Xie

 China Telecom

 Beijing

 China

 Email: xiechf@chinatelecom.cn

Feng, et al. Expires December 24, 2021 [Page 13]

	draft-ietf-netmod-yang-module-versioning-11
	draft-ietf-netmod-yang-packages-03
	draft-ietf-netmod-yang-schema-comparison-02
	draft-ietf-netmod-yang-semver-15
	draft-ma-netconf-with-system-02

