
Internet Engineering Task Force A. Malhotra
Internet-Draft Boston University
Intended status: Informational A. Langley
Expires: 21 November 2021 Google
 W. Ladd
 Cloudflare
 M. Dansarie
 20 May 2021

 Roughtime
 draft-ietf-ntp-roughtime-05

Abstract

 This document specifies Roughtime - a protocol that aims to achieve
 rough time synchronization while detecting servers that provide
 inaccurate time and providing cryptographic proof of their
 malfeasance.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 21 November 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Malhotra, et al. Expires 21 November 2021 [Page 1]

Internet-Draft Roughtime May 2021

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Requirements Language . 4
 3. Protocol Overview . 4
 4. The Guarantee . 5
 5. Message Format . 5
 5.1. Data Types . 6
 5.1.1. int32 . 6
 5.1.2. uint32 . 6
 5.1.3. uint64 . 6
 5.1.4. Tag . 7
 5.1.5. Timestamp . 7
 5.2. Header . 7
 6. Protocol Details . 8
 6.1. Requests . 9
 6.1.1. VER . 9
 6.1.2. NONC . 9
 6.2. Responses . 9
 6.2.1. SIG . 9
 6.2.2. VER . 10
 6.2.3. NONC . 10
 6.2.4. PATH . 10
 6.2.5. SREP . 10
 6.2.6. CERT . 11
 6.2.7. INDX . 11
 6.3. The Merkle Tree . 12
 6.3.1. Root Value Validity Check Algorithm 12
 6.4. Validity of Response 13
 7. Integration Into NTP . 13
 8. Grease . 14
 9. Roughtime Servers . 14
 10. Acknowledgements . 14
 11. IANA Considerations . 14
 11.1. Service Name and Transport Protocol Port Number
 Registry . 14
 11.2. Roughtime Version Registry 15
 11.3. Roughtime Tag Registry 15
 12. Security Considerations 17

Malhotra, et al. Expires 21 November 2021 [Page 2]

Internet-Draft Roughtime May 2021

 13. Privacy Considerations 18
 14. References . 18
 14.1. Normative References 18
 14.2. Informative References 19
 Appendix A. Terms and Abbreviations 20
 Authors’ Addresses . 21

1. Introduction

 Time synchronization is essential to Internet security as many
 security protocols and other applications require synchronization
 [RFC7384] [MCBG]. Unfortunately widely deployed protocols such as
 the Network Time Protocol (NTP) [RFC5905] lack essential security
 features, and even newer protocols like Network Time Security (NTS)
 [RFC8915] lack mechanisms to ensure that the servers behave
 correctly. Authenticating time servers prevents network adversaries
 from modifying time packets, but an authenticated time server still
 has full control over the contents of the time packet and may
 transmit incorrect time. The Roughtime protocol provides
 cryptographic proof of malfeasance, enabling clients to detect and
 prove to a third party a server’s attempts to influence the time a
 client computes.

 +==============+======================+=============================+
 | Protocol | Authenticated Server | Server Malfeasance Evidence |
 +==============+======================+=============================+
 | NTP, | N | N |
 | Chronos | | |
 +--------------+----------------------+-----------------------------+
 | NTP-MAC | Y* | N |
 +--------------+----------------------+-----------------------------+
 | NTP-Autokey | Y** | N |
 +--------------+----------------------+-----------------------------+
 | NTS | Y | N |
 +--------------+----------------------+-----------------------------+
 | Roughtime | Y | Y |
 +--------------+----------------------+-----------------------------+

 Table 1: Security Properties of current protocols.

 Y* For security issues with symmetric-key based NTP-MAC
 authentication, please refer to RFC 8573 [RFC8573].

 Y** For security issues with Autokey Public Key Authentication, refer
 to [Autokey].

Malhotra, et al. Expires 21 November 2021 [Page 3]

Internet-Draft Roughtime May 2021

 * If a server’s timestamps do not fit into the time context of other
 servers’ responses, then a Roughtime client can cryptographically
 prove this misbehavior to third parties. This helps detect
 dishonest or malfunctioning servers.

 * A Roughtime client can roughly detect (with no absolute guarantee)
 a delay attack [DelayAttacks] but can not cryptographically prove
 this to a third party. However such attacks expand the round trip
 time between request and response.

 * Note that delay attacks cannot be detected/stopped by any
 protocol. Delay attacks can not, however, undermine the security
 guarantees provided by Roughtime.

 * Although delay attacks cannot be prevented, they can be limited to
 a predetermined upper bound. This can be done by defining a
 maximal tolerable Round Trip Time (RTT) value, MAX-RTT, that a
 Roughtime client is willing to accept. A Roughtime client can
 measure the RTT of every request-response handshake and compare it
 to MAX-RTT. If the RTT exceeds MAX-RTT, the corresponding
 measurement is discarded. When this approach is used, the maximal
 time error that can be caused by a delay attack is MAX-RTT/2. It
 should be noted that this approach assumes that the nature of the
 system is known to the client, including reasonable upper bounds
 on the RTT value.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Protocol Overview

 Roughtime is a protocol for rough time synchronization that enables
 clients to provide cryptographic proof of server malfeasance. It
 does so by having responses from servers include a signature over a
 value derived from a nonce in the client request. This provides
 cryptographic proof that the timestamp was issued after the server
 received the client’s request. The derived value included in the
 server’s response is the root of a Merkle tree which includes the
 hash of the client’s nonce as the value of one of its leaf nodes.
 This enables the server to amortize the relatively costly signing
 operation over a number of client requests.

Malhotra, et al. Expires 21 November 2021 [Page 4]

Internet-Draft Roughtime May 2021

 Single server mode: At its most basic level, Roughtime is a one round
 protocol in which a completely fresh client requests the current time
 and the server sends a signed response. The response includes a
 timestamp and a radius used to indicate the server’s certainty about
 the reported time. For example, a radius of 1,000,000 microseconds
 means the server is absolutely confident that the true time is within
 one second of the reported time.

 The server proves freshness of its response as follows. The client’s
 request contains a nonce which the server incorporates into its
 signed response. The client can verify the server’s signatures and -
 provided that the nonce has sufficient entropy - this proves that the
 signed response could only have been generated after the nonce.

4. The Guarantee

 A Roughtime server guarantees that a response to a query sent at t_1,
 received at t_2, and with timestamp t_3 has been created between the
 transmission of the query and its reception. If t_3 is not within
 that interval, a server inconsistency may be detected and used to
 impeach the server. The propagation of such a guarantee and its use
 of type synchronization is discussed in Section 7. No delay attacker
 may affect this: they may only expand the interval between t_1 and
 t_2, or of course stop the measurement in the first place.

5. Message Format

 Roughtime messages are maps consisting of one or more (tag, value)
 pairs. They start with a header, which contains the number of pairs,
 the tags, and value offsets. The header is followed by a message
 values section which contains the values associated with the tags in
 the header. Messages MUST be formatted according to Figure 1 as
 described in the following sections.

 Messages MAY be recursive, i.e. the value of a tag can itself be a
 Roughtime message.

Malhotra, et al. Expires 21 November 2021 [Page 5]

Internet-Draft Roughtime May 2021

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Number of pairs (uint32) |
 +-+
 | |
 . .
 . N-1 offsets (uint32) .
 . .
 | |
 +-+
 | |
 . .
 . N tags (uint32) .
 . .
 | |
 +-+
 | |
 . .
 . Values .
 . .
 | |
 +-+

 Figure 1: Roughtime Message Format

5.1. Data Types

5.1.1. int32

 An int32 is a 32 bit signed integer. It is serialized least
 significant byte first in sign-magnitude representation with the sign
 bit in the most significant bit. The negative zero value
 (0x80000000) MUST NOT be used and any message with it is
 syntactically invalid and MUST be ignored.

5.1.2. uint32

 A uint32 is a 32 bit unsigned integer. It is serialized with the
 least significant byte first.

5.1.3. uint64

 A uint64 is a 64 bit unsigned integer. It is serialized with the
 least significant byte first.

Malhotra, et al. Expires 21 November 2021 [Page 6]

Internet-Draft Roughtime May 2021

5.1.4. Tag

 Tags are used to identify values in Roughtime messages. A tag is a
 uint32 but may also be listed in this document as a sequence of up to
 four ASCII characters [RFC0020]. ASCII strings shorter than four
 characters can be unambiguously converted to tags by padding them
 with zero bytes. For example, the ASCII string "NONC" would
 correspond to the tag 0x434e4f4e and "PAD" would correspond to
 0x00444150. Note that when encoded into a message the ASCII values
 will be in the corresponding order.

5.1.5. Timestamp

 A timestamp is a uint64 interpreted in the following way. The most
 significant 3 bytes contain the integer part of a Modified Julian
 Date (MJD). The least significant 5 bytes is a count of the number
 of microseconds since midnight on that day.

 The MJD is the number of UTC days since 17 November 1858
 [ITU-R_TF.457-2]. It is useful to note that 1 January 1970 is 40,587
 days after 17 November 1858.

 Note that, unlike NTP, this representation does not use the full
 number of bits in the fractional part and that days with leap seconds
 will have more or fewer than the nominal 86,400,000,000 microseconds.

5.2. Header

 All Roughtime messages start with a header. The first four bytes of
 the header is the uint32 number of tags N, and hence of (tag, value)
 pairs. The following 4*(N-1) bytes are offsets, each a uint32. The
 last 4*N bytes in the header are tags.

 Offsets refer to the positions of the values in the message values
 section. All offsets MUST be multiples of four and placed in
 increasing order. The first post-header byte is at offset 0. The
 offset array is considered to have a not explicitly encoded value of
 0 as its zeroth entry. The value associated with the ith tag begins
 at offset[i] and ends at offset[i+1]-1, with the exception of the
 last value which ends at the end of the message. Values may have
 zero length.

 Tags MUST be listed in the same order as the offsets of their values
 and MUST also be sorted in ascending order by numeric value. A tag
 MUST NOT appear more than once in a header.

Malhotra, et al. Expires 21 November 2021 [Page 7]

Internet-Draft Roughtime May 2021

6. Protocol Details

 As described in Section 3, clients initiate time synchronization by
 sending requests containing a nonce to servers who send signed time
 responses in return. Roughtime packets can be sent between clients
 and servers either as UDP datagrams or via TCP streams. Servers
 SHOULD support the UDP transport mode, while TCP transport is
 OPTIONAL.

 A Roughtime packet MUST be formatted according to Figure 2 and as
 described here. The first field is a uint64 with the value
 0x4d49544847554f52 ("ROUGHTIM" in ASCII). The second field is a
 uint32 and contains the length of the third field. The third and
 last field contains a Roughtime message as specified in Section 5.1.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 0x4d49544847554f52 (uint64) |
 | ("ROUGHTIM") |
 +-+
 | Message length (uint32) |
 +-+
 | |
 . .
 . Roughtime message .
 . .
 | |
 +-+

 Figure 2: Roughtime Packet Format

 Roughtime request and response packets MUST be transmitted in a
 single datagram when the UDP transport mode is used. Setting the
 packet’s don’t fragment bit [RFC0791] is OPTIONAL in IPv4 networks.

 Multiple requests and responses can be exchanged over an established
 TCP connection. Clients MAY send multiple requests at once and
 servers MAY send responses out of order. The connection SHOULD be
 closed by the client when it has no more requests to send and has
 received all expected responses. Either side SHOULD close the
 connection in response to synchronization, format, implementation-
 defined timeouts, or other errors.

 All requests and responses MUST contain the VER tag. It contains a
 list of one or more uint32 version numbers. The version of Roughtime
 specified by this memo has version number 1.

Malhotra, et al. Expires 21 November 2021 [Page 8]

Internet-Draft Roughtime May 2021

 NOTE TO RFC EDITOR: remove this paragraph before publication. For
 testing drafts of this memo, a version number of 0x80000000 plus the
 draft number is used.

6.1. Requests

 A request MUST contain the tags VER and NONC. Tags other than NONC
 and VER SHOULD be ignored by the server. A future version of this
 protocol may mandate additional tags in the message and asign them
 semantic meaning.

 The size of the request message SHOULD be at least 1024 bytes when
 the UDP transport mode is used. To attain this size the PAD tag
 SHOULD be added to the message. Its value SHOULD be all zeros.
 Responding to requests shorter than 1024 bytes is OPTIONAL and
 servers MUST NOT send responses larger than the requests they are
 replying to.

6.1.1. VER

 In a request, the VER tag contains a list of versions. The VER tag
 MUST include at least one Roughtime version supported by the client.
 The client MUST ensure that the version numbers and tags included in
 the request are not incompatible with each other or the packet
 contents.

6.1.2. NONC

 The value of the NONC tag is a 32 byte nonce. It SHOULD be generated
 in a manner indistinguishable from random. BCP 106 contains specific
 guidelines regarding this [RFC4086].

6.2. Responses

 A response MUST contain the tags SIG, VER, NONC, PATH, SREP, CERT,
 and INDX.

6.2.1. SIG

 In general, a SIG tag value is a 64 byte Ed25519 signature [RFC8032]
 over a concatenation of a signature context ASCII string and the
 entire value of a tag. All context strings MUST include a
 terminating zero byte.

 The SIG tag in the root of a response MUST be a signature over the
 SREP value using the public key contained in CERT. The context
 string MUST be "RoughTime v1 response signature".

Malhotra, et al. Expires 21 November 2021 [Page 9]

Internet-Draft Roughtime May 2021

6.2.2. VER

 In a response, the VER tag MUST contain a single version number. It
 SHOULD be one of the version numbers supplied by the client in its
 request. The server MUST ensure that the version number corresponds
 with the rest of the packet contents.

6.2.3. NONC

 The NONC tag MUST contain the nonce of the message being responded
 to.

6.2.4. PATH

 The PATH tag value MUST be a multiple of 32 bytes long and represent
 a path of 32 byte hash values in the Merkle tree used to generate the
 ROOT value as described in Section 6.3. In the case where a response
 is prepared for a single request and the Merkle tree contains only
 the root node, the size of PATH MUST be zero.

6.2.5. SREP

 The SREP tag contains a time response. Its value MUST be a Roughtime
 message with the tags ROOT, MIDP, and RADI. The server MAY include
 any of the tags DUT1, DTAI, and LEAP in the contents of the SREP tag.

 The ROOT tag MUST contain a 32 byte value of a Merkle tree root as
 described in Section 6.3.

 The MIDP tag value MUST be timestamp of the moment of processing.

 The RADI tag value MUST be a uint32 representing the server’s
 estimate of the accuracy of MIDP in microseconds. Servers MUST
 ensure that the true time is within (MIDP-RADI, MIDP+RADI) at the
 time they transmit the response message.

 The DUT1 tag value MUST be an int32 indicating the predicted
 difference between UT1 and UTC (UT1 - UTC) in milliseconds as given
 by the International Earth Rotation and Reference Systems Service
 (IERS).

 The DTAI tag value MUST be an int32 indicating the current difference
 between International Atomic Time (TAI) and UTC (TAI - UTC) in
 milliseconds as published in the International Bureau of Weights and
 Measures’ (BIPM) Circular T.

Malhotra, et al. Expires 21 November 2021 [Page 10]

Internet-Draft Roughtime May 2021

 The LEAP tag MUST contain zero or more int32 values, each
 representing a past or future leap second event. Positive values
 represent the addition of a second and negative values represent the
 removal of a second. The absolute value represents the MJD of the
 day that begins immediately after the leap second event.

 By way of illustration, there was a leap second 31 December 2016
 23:59:60. This event would be represented by the tag with numeric
 value 57754. The positive sign represents that there was an
 additional second inserted, the numeric value indicates 1 January
 2017, the following day that began at midnight after the addition.

 The leap second events MUST be sorted in reverse chronological order
 and the first item MUST be the last (past or future) leap second
 event that the server knows about. A LEAP tag with zero int32 values
 indicates that the server does not hold any updated leap second
 information.

6.2.6. CERT

 The CERT tag contains a public-key certificate signed with the
 server’s long-term key. Its value is a Roughtime message with the
 tags DELE and SIG, where SIG is a signature over the DELE value. The
 context string used to generate SIG MUST be "RoughTime v1 delegation
 signature--".

 The DELE tag contains a delegated public-key certificate used by the
 server to sign the SREP tag. Its value is a Roughtime message with
 the tags MINT, MAXT, and PUBK. The purpose of the DELE tag is to
 enable separation of a long-term public key from keys on devices
 exposed to the public Internet.

 The MINT tag is the minimum timestamp for which the key in PUBK is
 trusted to sign responses. MIDP MUST be more than or equal to MINT
 for a response to be considered valid.

 The MAXT tag is the maximum timestamp for which the key in PUBK is
 trusted to sign responses. MIDP MUST be less than or equal to MAXT
 for a response to be considered valid.

 The PUBK tag contains a temporary 32 byte Ed25519 public key which is
 used to sign the SREP tag.

6.2.7. INDX

 The INDX tag value is a uint32 determining the position of NONC in
 the Merkle tree used to generate the ROOT value as described in
 Section 6.3.

Malhotra, et al. Expires 21 November 2021 [Page 11]

Internet-Draft Roughtime May 2021

6.3. The Merkle Tree

 A Merkle tree is a binary tree where the value of each non-leaf node
 is a hash value derived from its two children. The root of the tree
 is thus dependent on all leaf nodes.

 In Roughtime, each leaf node in the Merkle tree represents the nonce
 in one request. Leaf nodes are indexed left to right, beginning with
 zero.

 The values of all nodes are calculated from the leaf nodes and up
 towards the root node using the first 32 bytes of the output of the
 SHA-512 hash algorithm [SHS]. For leaf nodes, the byte 0x00 is
 prepended to the nonce before applying the hash function. For all
 other nodes, the byte 0x01 is concatenated with first the left and
 then the right child node value before applying the hash function.

 The value of the Merkle tree’s root node is included in the ROOT tag
 of the response.

 The index of a request’s nonce node is included in the INDX tag of
 the response.

 The values of all sibling nodes in the path between a request’s nonce
 node and the root node is stored in the PATH tag so that the client
 can reconstruct and validate the value in the ROOT tag using its
 nonce. These values are each 32 bytes and are stored one after the
 other with no additional padding or structure. The order in which
 they are stored is described in Section 6.3.1

6.3.1. Root Value Validity Check Algorithm

 We describe how to compute the hash of the Merkel tree from the
 values in the tags PATH, INDX, and NONC. Our algorithm maintains a
 current hash value. The bits of INDX are ordered from least to most
 significant in this algorithm.

 At initialization hash is set to H(0x00 || nonce).

 If no more entries remain in PATH the current hash is the hash of the
 Merkel tree. All remaining bits of INDX must be zero.

 Otherwise let node be the next 32 bytes in PATH. If the current bit
 in INDX is 0 then hash = H(0x01 || node || hash), else hash =
 H(0x01 || hash || node).

Malhotra, et al. Expires 21 November 2021 [Page 12]

Internet-Draft Roughtime May 2021

6.4. Validity of Response

 A client MUST check the following properties when it receives a
 response. We assume the long-term server public key is known to the
 client through other means.

 * The signature in CERT was made with the long-term key of the
 server.

 * The DELE timestamps and the MIDP value are consistent.

 * The INDX and PATH values prove NONC was included in the Merkle
 tree with value ROOT using the algorithm in Section 6.3.1.

 * The signature of SREP in SIG validates with the public key in
 DELE.

 A response that passes these checks is said to be valid. Validity of
 a response does not prove the time is correct, but merely that the
 server signed it, and thus promises that it began to compute the
 signature at a time in the interval (MIDP-RADI, MIDP+RADI).

7. Integration Into NTP

 We assume that there is a bound PHI on the frequency error in the
 clock on the machine. Given a measurement taken at a local time t,
 we know the true time is in (t-delta-sigma, t-delta+sigma). After d
 seconds have elapsed we know the true time is within (t-delta-sigma-
 d*PHI, t-delta+sigma+d*PHI). A simple and effective way to mix with
 NTP or PTP discipline of the clock is to trim the observed intervals
 in NTP to fit entirely within this window or reject measurements that
 fall to far outside. This assumes time has not been stepped. If the
 NTP process decides to step the time, it MUST use Roughtime to ensure
 the new truetime estimate that will be stepped to is consistent with
 the true time.

 Should this window become too large, another Roughtime measurement is
 called for. The definition of "too large" is implementation defined.

 Implementations MAY use other, more sophisticated means of adjusting
 the clock respecting Roughtime information. Other applications such
 as X.509 verification may wish to

Malhotra, et al. Expires 21 November 2021 [Page 13]

Internet-Draft Roughtime May 2021

8. Grease

 Servers MAY send back a fraction of responses that are syntactically
 invalid or contain invalid signatures as well as incorrect times.
 Clients MUST properly reject such responses. Servers MUST NOT send
 back responses with incorrect times and valid signatures. Either
 signature MAY be invalid for this application.

9. Roughtime Servers

 NOTE TO RFC EDITOR: remove this section before publication.

 The below list contains a list of servers with their public keys in
 Base64 format. These servers may implement older versions of this
 specification.

 address: roughtime.cloudflare.com
 port: 2002
 long-term key: gD63hSj3ScS+wuOeGrubXlq35N1c5Lby/S+T7MNTjxo=

 address: roughtime.int08h.com
 port: 2002
 long-term key: AW5uAoTSTDfG5NfY1bTh08GUnOqlRb+HVhbJ3ODJvsE=

 address: roughtime.sandbox.google.com
 port: 2002
 long-term key: etPaaIxcBMY1oUeGpwvPMCJMwlRVNxv51KK/tktoJTQ=

 address: roughtime.se
 port: 2002
 long-term key: S3AzfZJ5CjSdkJ21ZJGbxqdYP/SoE8fXKY0+aicsehI=

10. Acknowledgements

 Thomas Peterson corrected multiple nits. Peter Loethberg, Tal
 Mizrahi, Ragnar Sundblad, Kristof Teichel, and the other members of
 the NTP working group contributed comments and suggestions.

11. IANA Considerations

11.1. Service Name and Transport Protocol Port Number Registry

 IANA is requested to allocate the following entry in the Service Name
 and Transport Protocol Port Number Registry [RFC6335]:

 Service Name: Roughtime

 Transport Protocol: tcp,udp

Malhotra, et al. Expires 21 November 2021 [Page 14]

Internet-Draft Roughtime May 2021

 Assignee: IESG <iesg@ietf.org>

 Contact: IETF Chair <chair@ietf.org>

 Description: Roughtime time synchronization

 Reference: [[this memo]]

 Port Number: [[TBD1]], selected by IANA from the User Port range

11.2. Roughtime Version Registry

 IANA is requested to create a new registry entitled "Roughtime
 Version Registry". Entries shall have the following fields:

 Version ID (REQUIRED): a 32-bit unsigned integer

 Version name (REQUIRED): A short text string naming the version
 being identified.

 Reference (REQUIRED): A reference to a relevant specification
 document.

 The policy for allocation of new entries SHOULD be: IETF Review.

 The initial contents of this registry shall be as follows:

 +=======================+======================+===============+
 | Version ID | Version name | Reference |
 +=======================+======================+===============+
 | 0x0 | Reserved | [[this memo]] |
 +-----------------------+----------------------+---------------+
 | 0x1 | Roughtime version 1 | [[this memo]] |
 +-----------------------+----------------------+---------------+
 | 0x2-0x7fffffff | Unassigned | |
 +-----------------------+----------------------+---------------+
 | 0x80000000-0xffffffff | Reserved for Private | [[this memo]] |
 | | or Experimental use | |
 +-----------------------+----------------------+---------------+

 Table 2: Roughtime version assignments.

11.3. Roughtime Tag Registry

 IANA is requested to create a new registry entitled "Roughtime Tag
 Registry". Entries SHALL have the following fields:

 Tag (REQUIRED): A 32-bit unsigned integer in hexadecimal format.

Malhotra, et al. Expires 21 November 2021 [Page 15]

Internet-Draft Roughtime May 2021

 ASCII Representation (OPTIONAL): The ASCII representation of the
 tag in accordance with Section 5.1.4 of this memo, if applicable.

 Reference (REQUIRED): A reference to a relevant specification
 document.

 The policy for allocation of new entries in this registry SHOULD be:
 Specification Required.

 The initial contents of this registry SHALL be as follows:

Malhotra, et al. Expires 21 November 2021 [Page 16]

Internet-Draft Roughtime May 2021

 +============+======================+===============+
 | Tag | ASCII Representation | Reference |
 +============+======================+===============+
 | 0x00444150 | PAD | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x00474953 | SIG | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x00524556 | VER | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x31545544 | DUT1 | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x434e4f4e | NONC | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x454c4544 | DELE | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x48544150 | PATH | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x49415444 | DTAI | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x49444152 | RADI | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x4b425550 | PUBK | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x5041454c | LEAP | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x5044494d | MIDP | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x50455253 | SREP | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x544e494d | MINT | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x544f4f52 | ROOT | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x54524543 | CERT | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x5458414d | MAXT | [[this memo]] |
 +------------+----------------------+---------------+
 | 0x58444e49 | INDX | [[this memo]] |
 +------------+----------------------+---------------+

 Table 3: Roughtime tags.

12. Security Considerations

 Since the only supported signature scheme, Ed25519, is not quantum
 resistant, the Roughtime version described in this memo will not
 survive the advent of quantum computers.

Malhotra, et al. Expires 21 November 2021 [Page 17]

Internet-Draft Roughtime May 2021

 Maintaining a list of trusted servers and adjudicating violations of
 the rules by servers is not discussed in this document and is
 essential for security. Roughtime clients MUST regularly update
 their view of which servers are trustworthy in order to benefit from
 the detection of misbehavior.

 Validating timestamps made on different dates requires knowledge of
 leap seconds in order to calculate time intervals correctly.

 Servers carry out a significant amount of computation in response to
 clients, and thus may experience vulnerability to denial of service
 attacks.

 This protocol does not provide any confidentiality. Given the nature
 of timestamps such impact is minor.

 The compromise of a PUBK’s private key, even past MAXT, is a problem
 as the private key can be used to sign invalid times that are in the
 range MINT to MAXT, and thus violate the good behavior guarantee of
 the server.

 Servers MUST NOT send response packets larger than the request
 packets sent by clients, in order to prevent amplification attacks.

13. Privacy Considerations

 This protocol is designed to obscure all client identifiers. Servers
 necessarily have persistent long-term identities essential to
 enforcing correct behavior.

 Generating nonces in a nonrandom manner can cause leaks of private
 data or enable tracking of clients as they move between networks.

14. References

14.1. Normative References

 [ITU-R_TF.457-2]
 ITU-R, "Use of the Modified Julian Date by the Standard-
 Frequency and Time-Signal Services", ITU-R
 Recommendation TF.457-2, October 1997.

 [ITU-R_TF.460-6]
 ITU-R, "Standard-Frequency and Time-Signal Emissions",
 ITU-R Recommendation TF.460-6, February 2002.

Malhotra, et al. Expires 21 November 2021 [Page 18]

Internet-Draft Roughtime May 2021

 [RFC0020] Cerf, V., "ASCII format for network interchange", STD 80,
 RFC 20, DOI 10.17487/RFC0020, October 1969,
 <https://www.rfc-editor.org/info/rfc20>.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,
 RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <https://www.rfc-editor.org/info/rfc6335>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <https://www.rfc-editor.org/info/rfc8032>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [SHS] National Institute of Standards and Technology, "Secure
 Hash Standard", DOI 10.6028/NIST.FIPS.180-4, FIPS 180-4,
 August 2015, <https://doi.org/10.6028/NIST.FIPS.180-4>.

14.2. Informative References

 [Autokey] Rottger, S., "Analysis of the NTP Autokey Procedures",
 2012, <https://zero-entropy.de/autokey_analysis.pdf>.

 [DelayAttacks]
 Mizrahi, T., "A Game Theoretic Analysis of Delay Attacks
 Against Time Synchronization Protocols",
 DOI 10.1109/ISPCS.2012.6336612, 2012,
 <https://ieeexplore.ieee.org/document/6336612>.

 [MCBG] Malhotra, A., Cohen, I., Brakke, E., and S. Goldberg,
 "Attacking the Network Time Protocol", 2015,
 <https://eprint.iacr.org/2015/1020>.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <https://www.rfc-editor.org/info/rfc768>.

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 DOI 10.17487/RFC0791, September 1981,
 <https://www.rfc-editor.org/info/rfc791>.

Malhotra, et al. Expires 21 November 2021 [Page 19]

Internet-Draft Roughtime May 2021

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <https://www.rfc-editor.org/info/rfc793>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <https://www.rfc-editor.org/info/rfc4086>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC7384] Mizrahi, T., "Security Requirements of Time Protocols in
 Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,
 October 2014, <https://www.rfc-editor.org/info/rfc7384>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8573] Malhotra, A. and S. Goldberg, "Message Authentication Code
 for the Network Time Protocol", RFC 8573,
 DOI 10.17487/RFC8573, June 2019,
 <https://www.rfc-editor.org/info/rfc8573>.

 [RFC8915] Franke, D., Sibold, D., Teichel, K., Dansarie, M., and R.
 Sundblad, "Network Time Security for the Network Time
 Protocol", RFC 8915, DOI 10.17487/RFC8915, September 2020,
 <https://www.rfc-editor.org/info/rfc8915>.

Appendix A. Terms and Abbreviations

 ASCII American Standard Code for Information Interchange

 IANA Internet Assigned Numbers Authority

 JSON JavaScript Object Notation [RFC8259]

 MJD Modified Julian Date

 NTP Network Time Protocol [RFC5905]

Malhotra, et al. Expires 21 November 2021 [Page 20]

Internet-Draft Roughtime May 2021

 NTS Network Time Security [RFC8915]

 TAI International Atomic Time (Temps Atomique International)
 [ITU-R_TF.460-6]

 TCP Transmission Control Protocol [RFC0793]

 UDP User Datagram Protocol [RFC0768]

 UT Universal Time [ITU-R_TF.460-6]

 UTC Coordinated Universal Time [ITU-R_TF.460-6]

Authors’ Addresses

 Aanchal Malhotra
 Boston University
 111 Cummington Mall
 Boston, MA 02215
 United States of America

 Email: aanchal4@bu.edu

 Adam Langley
 Google

 Email: agl@google.com

 Watson Ladd
 Cloudflare
 101 Townsend St
 San Francisco, CA 94107
 United States of America

 Email: watsonbladd@gmail.com

 Marcus Dansarie

 Email: marcus@dansarie.se
 URI: https://orcid.org/0000-0001-9246-0263

Malhotra, et al. Expires 21 November 2021 [Page 21]

