
Network Working Group M. Tuexen, Ed.
Internet-Draft Muenster Univ. of Appl. Sciences
Intended status: Informational F. Risso
Expires: 30 January 2023 Politecnico di Torino
 J. Bongertz
 Airbus DS CyberSecurity
 G. Combs
 Wireshark
 G. Harris

 E. Chaudron
 Red Hat
 M. Richardson
 Sandelman
 29 July 2022

 PCAP Next Generation (pcapng) Capture File Format
 draft-tuexen-opsawg-pcapng-05

Abstract

 This document describes a format to record captured packets to a
 file. This format is extensible; Wireshark can currently read and
 write it, and libpcap can currently read some pcapng files.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Discussion of this document takes place on the OPSAWG Working Group
 mailing list (opsawg@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/browse/opsawg/.

 Source for this draft and an issue tracker can be found at
 https://github.com/pcapng/pcapng.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Tuexen, et al. Expires 30 January 2023 [Page 1]

Internet-Draft pcapng July 2022

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 30 January 2023.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 2.1. Acronyms . 4
 3. General File Structure 4
 3.1. General Block Structure 4
 3.2. Block Types . 5
 3.3. Logical Block Hierarchy 7
 3.4. Physical File Layout 7
 3.5. Options . 9
 3.5.1. Custom Options 12
 3.6. Data format . 13
 3.6.1. Endianness . 13
 3.6.2. Alignment . 14
 4. Block Definition . 14
 4.1. Section Header Block 14
 4.2. Interface Description Block 18
 4.3. Enhanced Packet Block 25
 4.3.1. Enhanced Packet Block Flags Word 30
 4.4. Simple Packet Block 31
 4.5. Name Resolution Block 33
 4.6. Interface Statistics Block 37
 4.7. Decryption Secrets Block 40
 4.8. Custom Block . 44
 5. Vendor-Specific Custom Extensions 46
 5.1. Supported Use-Cases 46

Tuexen, et al. Expires 30 January 2023 [Page 2]

Internet-Draft pcapng July 2022

 5.2. Controlling Copy Behavior 46
 5.3. Strings vs. Octets 47
 5.4. Endianness Issues . 47
 6. Recommended File Name Extension: .pcapng 48
 7. Conclusions . 49
 8. Implementations . 49
 9. Security Considerations 49
 10. IANA Considerations . 49
 10.1. Standardized Block Type Codes 49
 11. Contributors . 52
 12. Acknowledgments . 52
 13. References . 52
 13.1. Normative References 52
 13.2. Informative References 53
 Appendix A. Packet Block (obsolete!) 53
 Authors’ Addresses . 56

1. Introduction

 The problem of exchanging packet traces becomes more and more
 critical every day; unfortunately, no standard solutions exist for
 this task right now. One of the most accepted packet interchange
 formats is the one defined by libpcap, which is rather old and is
 lacking in functionality for more modern applications particularly
 from the extensibility point of view.

 This document proposes a new format for recording packet traces. The
 following goals are being pursued:

 Extensibility: It should be possible to add new standard
 capabilities to the file format over time, and third parties
 should be able to enrich the information embedded in the file with
 proprietary extensions, with tools unaware of newer extensions
 being able to ignore them.

 Portability: A capture trace must contain all the information needed
 to read data independently from network, hardware and operating
 system of the machine that made the capture.

 Merge/Append data: It should be possible to add data at the end of a
 given file, and the resulting file must still be readable.

Tuexen, et al. Expires 30 January 2023 [Page 3]

Internet-Draft pcapng July 2022

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2.1. Acronyms

 The following acronyms are used throughout this document:

 SHB: Section Header Block

 IDB: Interface Description Block

 ISB: Interface Statistics Block

 EPB: Enhanced Packet Block

 SPB: Simple Packet Block

 NRB: Name Resolution Block

 CB: Custom Block

3. General File Structure

3.1. General Block Structure

 A capture file is organized in blocks, that are appended one to
 another to form the file. All the blocks share a common format,
 which is shown in Figure 1.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 0 | Block Type |
 +-+
 4 | Block Total Length |
 +-+
 8 / Block Body /
 / variable length, padded to 32 bits /
 +-+
 | Block Total Length |
 +-+

 Figure 1: Basic block structure.

Tuexen, et al. Expires 30 January 2023 [Page 4]

Internet-Draft pcapng July 2022

 The fields have the following meaning:

 * Block Type (32 bits): a unique unsigned value that identifies the
 block. Values whose Most Significant Bit (MSB) is equal to 1 are
 reserved for local use. They can be used to make extensions to
 the file format to save private data to the file. The list of
 currently defined types can be found in Section 10.1.

 * Block Total Length (32 bits): an unsigned value giving the total
 size of this block, in octets. For instance, the length of a
 block that does not have a body is 12 octets: 4 octets for the
 Block Type, 4 octets for the initial Block Total Length and 4
 octets for the trailing Block Total Length. This value MUST be a
 multiple of 4.

 * Block Body: content of the block.

 * Block Total Length: total size of this block, in octets. This
 field is duplicated to permit backward file navigation.

 This structure, shared among all blocks, makes it easy to process a
 file and to skip unneeded or unknown blocks. Some blocks can contain
 other blocks inside (nested blocks). Some of the blocks are
 mandatory, i.e. a capture file is not valid if they are not present,
 other are optional.

 The General Block Structure allows defining other blocks if needed.
 A parser that does not understand them can simply ignore their
 content.

3.2. Block Types

 The currently standardized Block Type codes are specified in
 Section 10.1; they have been grouped in the following four
 categories:

 The following MANDATORY block MUST appear at least once in each file:

 * Section Header Block (Section 4.1): it defines the most important
 characteristics of the capture file.

 The following OPTIONAL blocks MAY appear in a file:

 * Interface Description Block (Section 4.2): it defines the most
 important characteristics of the interface(s) used for capturing
 traffic. This block is required in certain cases, as described
 later.

Tuexen, et al. Expires 30 January 2023 [Page 5]

Internet-Draft pcapng July 2022

 * Enhanced Packet Block (Section 4.3): it contains a single captured
 packet, or a portion of it. It represents an evolution of the
 original, now obsolete, Packet Block (Appendix A). If this
 appears in a file, an Interface Description Block is also
 required, before this block.

 * Simple Packet Block (Section 4.4): it contains a single captured
 packet, or a portion of it, with only a minimal set of information
 about it. If this appears in a file, an Interface Description
 Block is also required, before this block.

 * Name Resolution Block (Section 4.5): it defines the mapping from
 numeric addresses present in the packet capture and the canonical
 name counterpart.

 * Interface Statistics Block (Section 4.6): it defines how to store
 some statistical data (e.g. packet dropped, etc) which can be
 useful to understand the conditions in which the capture has been
 made. If this appears in a file, an Interface Description Block
 is also required, before this block.

 * Custom Block (Section 4.8): it contains vendor-specific data in a
 portable fashion.

 The following OBSOLETE block SHOULD NOT appear in newly written files
 (but is documented in the Appendix for reference):

 * Packet Block (Appendix A): it contains a single captured packet,
 or a portion of it. It is OBSOLETE, and superseded by the
 Enhanced Packet Block (Section 4.3).

 The following EXPERIMENTAL blocks are considered interesting but the
 authors believe that they deserve more in-depth discussion before
 being defined:

 * Alternative Packet Blocks

 * Compression Block

 * Encryption Block

 * Fixed Length Block

 * Directory Block

 * Traffic Statistics and Monitoring Blocks

 * Event/Security Blocks

Tuexen, et al. Expires 30 January 2023 [Page 6]

Internet-Draft pcapng July 2022

 Requests for new standardized Block Type codes should be made by
 creating a pull request to update this document as described in
 Section 10.1.

3.3. Logical Block Hierarchy

 The blocks build a logical hierarchy as they refer to each other.
 Figure 2 shows the logical hierarchy of the currently defined blocks
 in the form of a "tree view":

 Section Header
 |
 +- Interface Description
 | +- Simple Packet
 | +- Enhanced Packet
 | +- Interface Statistics
 |
 +- Name Resolution

 Figure 2: Logical Block Hierarchy of a pcapng File

 For example: each captured packet refers to a specific capture
 interface, the interface itself refers to a specific section.

3.4. Physical File Layout

 The file MUST begin with a Section Header Block. However, more than
 one Section Header Block can be present in the capture file, each one
 covering the data following it until the next one (or the end of
 file). A Section includes the data delimited by two Section Header
 Blocks (or by a Section Header Block and the end of the file),
 including the first Section Header Block.

 In case an application cannot read a Section because of different
 version number, it MUST skip everything until the next Section Header
 Block. Note that, in order to properly skip the blocks until the
 next section, all blocks MUST have the fields Type and Length at the
 beginning. In order to properly skip blocks in the backward
 direction, all blocks MUST have the Length repeated at the end of the
 block. These are mandatory requirements that MUST be maintained in
 future versions of the block format.

 Figure 3 shows a typical file layout, with a single Section Header
 that covers the whole file.

 +-+
 | SHB v1.0 | Data |
 +-+

Tuexen, et al. Expires 30 January 2023 [Page 7]

Internet-Draft pcapng July 2022

 Figure 3: File structure example: Typical layout with a single
 Section Header Block

 Figure 4 shows a file that contains three headers, and is normally
 the result of file concatenation. An application that understands
 only version 1.0 of the file format skips the intermediate section
 and restart processing the packets after the third Section Header.

 |-- 1st Section --|-- 2nd Section --|-- 3rd Section --|
 | |
 +-+
 | SHB v1.0 | Data | SHB V1.1 | Data | SHB V1.0 | Data |
 +-+

 Figure 4: File structure example: three Section Header Blocks in
 a single file

 Figure 5 shows a file comparable to a "classic libpcap" file - the
 minimum for a useful capture file. It contains a single
 Section Header Block (SHB), a single Interface Description Block
 (IDB) and a few Enhanced Packet Blocks (EPB).

 +-+
 | SHB | IDB | EPB | EPB | ... | EPB |
 +-+

 Figure 5: File structure example: a pcapng file similar to a
 classical libpcap file

 Figure 6 shows a complex example file. In addition to the minimum
 file above, it contains packets captured from three interfaces,
 capturing on the third of which begins after packets have arrived on
 other interfaces, and also includes some Name Resolution Blocks (NRB)
 and an Interface Statistics Block (ISB).

 +-+
 | SHB | IDB | IDB | EPB | NRB |...| IDB | EPB | ISB | NRB | EPB |
 +-+

 Figure 6: File structure example: complex pcapng file

 The last example should make it obvious that the block structure
 makes the file format very flexible compared to the classical libpcap
 format.

Tuexen, et al. Expires 30 January 2023 [Page 8]

Internet-Draft pcapng July 2022

3.5. Options

 All the block bodies MAY embed optional fields. Optional fields can
 be used to insert some information that may be useful when reading
 data, but that is not really needed for packet processing.
 Therefore, each tool can either read the content of the optional
 fields (if any), or skip some of them or even all at once.

 A block that may contain options must be structured so that the
 number of octets of data in the Block Body that precede the options
 can be determined from that data; that allows the beginning of the
 options to be found. That is true for all standard blocks that
 support options; for Custom Blocks that support options, the Custom
 Data must be structured in such a fashion. This means that the Block
 Length field (present in the General Block Structure, see
 Section 3.1) can be used to determine how many octets of optional
 fields, if any, are present in the block. That number can be used to
 determine whether the block has optional fields (if it is zero, there
 are no optional fields), to check, when processing optional fields,
 whether any optional fields remain, and to skip all the optional
 fields at once.

 Options are a list of Type - Length - Value fields, each one
 containing a single value:

 * Option Type (16 bits): an unsigned value that contains the code
 that specifies the type of the current TLV record. Option types
 whose Most Significant Bit is equal to one are reserved for local
 use; therefore, there is no guarantee that the code used is unique
 among all capture files (generated by other applications), and is
 most certainly not portable. For cross-platform globally unique
 vendor-specific extensions, the Custom Option MUST be used
 instead, as defined in Section 3.5.1).

 * Option Length (16 bits): an unsigned value that contains the
 actual length of the following ’Option Value’ field without the
 padding octets.

 * Option Value (variable length): the value of the given option,
 padded to a 32-bit boundary. The actual length of this field
 (i.e. without the padding octets) is specified by the Option
 Length field.

 Requests for new standardized option codes for a given block should
 be made by creating a pull request to update this document as
 described in Section 10.1.

Tuexen, et al. Expires 30 January 2023 [Page 9]

Internet-Draft pcapng July 2022

 A given option may have a fixed length, in which case all instances
 of that option have a length that is equal to the specified fixed
 length, or a variable length, in which case the option has a minimum
 length and all instances of that option must have a length equal to
 or greater than the specified minimum length. The length of fixed-
 length options, and the minimum length of variable-length options, is
 specified in the description of the option; if the minimum length of
 a variable-length option is not specified, a zero-length option is
 valid. Software that reads these files SHOULD report options that
 have an invalid length as errors; the software MAY stop processing
 the file if it sees an option that has invalid length, or MAY ignore
 the option and continue processing it. Software that writes these
 files MUST NOT write files with options that have invalid lengths.

 If an option’s value is a string, the value is not necessarily zero-
 terminated. Software that reads these files MUST NOT assume that
 strings are zero-terminated, and MUST treat a zero-value octet as a
 string terminator.

 Some options may be repeated several times; for example, a block can
 have multiple comments, and an Interface Description Block can give
 multiple IPv4 or IPv6 addresses for the interface if it has multiple
 IPv4 or IPv6 addresses assigned to it. Other options may appear at
 most once in a given block.

 The option list is terminated by an option which uses the special
 ’End of Option’ code (opt_endofopt). Code that writes pcapng files
 MUST put an opt_endofopt option at the end of an option list. Code
 that reads pcapng files MUST NOT assume an option list will have an
 opt_endofopt option at the end; it MUST also check for the end of the
 block, and SHOULD treat blocks where the option list has no
 opt_endofopt option as if the option list had an opt_endofopt option
 at the end.

 The format of the optional fields is shown in Figure 7.

Tuexen, et al. Expires 30 January 2023 [Page 10]

Internet-Draft pcapng July 2022

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Option Code | Option Length |
 +-+
 / Option Value /
 / variable length, padded to 32 bits /
 +-+
 / /
 / . . . other options . . . /
 / /
 +-+
 | Option Code == opt_endofopt | Option Length == 0 |
 +-+

 Figure 7: Options Format

 The following codes can always be present in any optional field:

 +==============+=======================+===========+==========+
 | Name | Code | Length | Multiple |
 | | | | allowed? |
 +==============+=======================+===========+==========+
 | opt_endofopt | 0 | 0 | no |
 +--------------+-----------------------+-----------+----------+
 | opt_comment | 1 | variable | yes |
 +--------------+-----------------------+-----------+----------+
 | opt_custom | 2988/2989/19372/19373 | variable, | yes |
 | | | minimum 4 | |
 +--------------+-----------------------+-----------+----------+

 Table 1: Common Options

 opt_endofopt:
 The opt_endofopt option delimits the end of the optional
 fields. This option MUST NOT be repeated within a given list
 of options.

 opt_comment:
 The opt_comment option is a UTF-8 string containing human-
 readable comment text that is associated to the current
 block. Line separators SHOULD be a carriage-return +
 linefeed (’\r\n’) or just linefeed (’\n’); either form may
 appear and be considered a line separator. The string is not
 zero-terminated.

Tuexen, et al. Expires 30 January 2023 [Page 11]

Internet-Draft pcapng July 2022

 Examples: "This packet is the beginning of all of our problems",
 "Packets 17-23 showing a bogus TCP retransmission!\r\n This is
 reported in bugzilla entry 1486.\nIt will be fixed in the future.".

 opt_custom:
 This option is described in detail in Section 3.5.1.

3.5.1. Custom Options

 Customs Options are used for portable, vendor-specific data related
 to the block they’re in. A Custom Option can be in any block type
 that can have options, can be repeated any number of times in a
 block, and may come before or after other option types - except the
 opt_endofopt option, which is always the last option. Different
 Custom Options, of different type codes and/or different Private
 Enterprise Numbers, may be used in the same pcapng file. See
 Section 5 for additional details.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Custom Option Code | Option Length |
 +-+
 | Private Enterprise Number (PEN) |
 +-+
 / Custom Data /
 / variable length, padded to 32 bits /
 +-+

 Figure 8: Custom Options Format

 The Custom Option has the following fields:

 * Custom Option Code: The code number for the Custom Option, which
 can be one of the following decimal numbers:

 2988:
 This option code identifies a Custom Option containing a
 UTF-8 string in the Custom Data portion. The string is
 not zero-terminated. This Custom Option can be safely
 copied to a new file if the pcapng file is manipulated by
 an application; otherwise 19372 should be used instead.
 See Section 5.2 for details.

 2989:

Tuexen, et al. Expires 30 January 2023 [Page 12]

Internet-Draft pcapng July 2022

 This option code identifies a Custom Option containing
 binary octets in the Custom Data portion. This Custom
 Option can be safely copied to a new file if the pcapng
 file is manipulated by an application; otherwise 19372
 should be used instead. See Section 5.2 for details.

 19372:
 This option code identifies a Custom Option containing a
 UTF-8 string in the Custom Data portion. The string is
 not zero-terminated. This Custom Option should not be
 copied to a new file if the pcapng file is manipulated by
 an application. See Section 5.2 for details.

 19373:
 This option code identifies a Custom Option containing
 binary octets in the Custom Data portion. This Custom
 Option should not be copied to a new file if the pcapng
 file is manipulated by an application. See Section 5.2
 for details.

 * Option Length: as described in Section 3.1, this contains the
 length of the option’s value, which includes the 4-octet Private
 Enterprise Number and variable-length Custom Data fields, without
 the padding octets.

 * Private Enterprise Number: An IANA-assigned Private Enterprise
 Number identifying the organization which defined the Custom
 Option. See Section 5.1 for details. The PEN MUST be encoded
 using the same endianness as the Section Header Block it is within
 the scope of.

 * Custom Data: the custom data, padded to a 32 bit boundary.

3.6. Data format

3.6.1. Endianness

 Data contained in each section will always be saved according to the
 characteristics (little endian / big endian) of the capturing
 machine. This refers to all the fields that are saved as numbers and
 that span over two or more octets.

 The approach of having each section saved in the native format of the
 generating host is more efficient because it avoids translation of
 data when reading / writing on the host itself, which is the most
 common case when generating/processing capture captures.

Tuexen, et al. Expires 30 January 2023 [Page 13]

Internet-Draft pcapng July 2022

 Please note: The endianness is indicated by the Section Header Block
 (Section 4.1). Since this block can appear several times in a pcapng
 file, a single file can contain both endianness variants.

3.6.2. Alignment

 All fields of this specification use proper alignment for 16- and
 32-bit values. This makes it easier and faster to read/write file
 contents if using techniques like memory mapped files.

 The alignment octets (marked in this document e.g. with "padded to 32
 bits") MUST be filled with zeroes.

 Please note: 64-bit values are not aligned to 64-bit boundaries.
 This is because the file is naturally aligned to 32-bit boundaries
 only. Special care MUST be taken when reading and writing such
 values. (Note also that some 64-bit values are represented as a
 64-bit integer in the endianness of the machine that wrote the file,
 and others are represented as 2 32-bit values, one containing the
 upper 32 bits of the value and one containing the lower 32 bits of
 the value, each written as 32-bit integers in the endianness of the
 machine that wrote the file. Neither of these formats guarantee
 64-bit alignment.)

4. Block Definition

 This section details the format of the blocks currently defined.

4.1. Section Header Block

 The Section Header Block (SHB) is mandatory. It identifies the
 beginning of a section of the capture file. The Section Header Block
 does not contain data but it rather identifies a list of blocks
 (interfaces, packets) that are logically correlated. Its format is
 shown in Figure 9.

Tuexen, et al. Expires 30 January 2023 [Page 14]

Internet-Draft pcapng July 2022

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 0 | Block Type = 0x0A0D0D0A |
 +-+
 4 | Block Total Length |
 +-+
 8 | Byte-Order Magic |
 +-+
 12 | Major Version | Minor Version |
 +-+
 16 | |
 | Section Length |
 | |
 +-+
 24 / /
 / Options (variable) /
 / /
 +-+
 | Block Total Length |
 +-+

 Figure 9: Section Header Block Format

 The meaning of the fields is:

 * Block Type: The block type of the Section Header Block is the
 integer corresponding to the 4-char string "\n\r\r\n"
 (0x0A0D0D0A). This particular value is used for 2 reasons:

 1. This number is used to detect if a file has been transferred
 via FTP or HTTP from a machine to another with an
 inappropriate ASCII conversion. In this case, the value of
 this field will differ from the standard one ("\n\r\r\n") and
 the reader can detect a possibly corrupted file.

 2. This value is palindromic, so that the reader is able to
 recognize the Section Header Block regardless of the
 endianness of the section. The endianness is recognized by
 reading the Byte Order Magic, which is located 8 octets after
 the Block Type.

 * Block Total Length: total size of this block, as described in
 Section 3.1.

Tuexen, et al. Expires 30 January 2023 [Page 15]

Internet-Draft pcapng July 2022

 * Byte-Order Magic (32 bits): an unsigned magic number, whose value
 is the hexadecimal number 0x1A2B3C4D. This number can be used to
 distinguish sections that have been saved on little-endian
 machines from the ones saved on big-endian machines, and to
 heuristically identify pcapng files.

 * Major Version (16 bits): an unsigned value, giving the number of
 the current major version of the format. The value for the
 current version of the format is 1.

 * Minor Version (16 bits): an unsigned value, giving the number of
 the current minor version of the format. The value for the
 current version of the format is 0.

 * Section Length (64 bits): a signed value specifying the length in
 octets of the following section, excluding the Section Header
 Block itself. This field can be used to skip the section, for
 faster navigation inside large files. If the Section Length is -1
 (0xFFFFFFFFFFFFFFFF), this means that the size of the section is
 not specified, and the only way to skip the section is to parse
 the blocks that it contains. Please note that if this field is
 valid (i.e. not negative), its value is always a multiple of 4, as
 all the blocks are aligned to and padded to 32-bit (4 octet)
 boundaries. Also, special care should be taken in accessing this
 field: since the alignment of all the blocks in the file is
 32-bits, this field is not guaranteed to be aligned to a 64-bit
 boundary. This could be a problem on 64-bit processors.

 * Options: optionally, a list of options (formatted according to the
 rules defined in Section 3.5) can be present.

 Writers of pcapng files MUST NOT write SHBs with a Major Version
 other than 1 or a Minor Version other than 0. If they do so, they
 will write a file that many readers of pcapng files, such as programs
 using libpcap to read pcapng files (including, but not limited to,
 tcpdump), Wireshark, and possibly other programs not to be able to
 read their files.

 Some pcapng file writers have used a minor version of 2, but the file
 format did not change incompatibly (new block types were added);
 Readers of pcapng files MUST treat a Minor Version of 2 as equivalent
 to a Minor Version of 0 (and, if they also write a pcapng file based
 on the results of reading one or more pcapng files, they MUST NOT, as
 per the previous sentence, write an SHB with a Minor Version of 2,
 even if they read an SHB with a Minor Version of 2). As indicated
 above, using a minor version number other than 0 when writing a
 section of a pcapng file will produce a section that most existing
 software will not be able to read; future versions of some of that

Tuexen, et al. Expires 30 January 2023 [Page 16]

Internet-Draft pcapng July 2022

 software will be able to read sections with a version of 1.2, but
 older copies of that software that are not updated to the latest
 version will still not be able to read them.

 The Major Version would be changed only if a new version of this
 specification, for a later major version of the file format, were
 created. Such a version would only be created if the format were to
 change in such a way that code that reads the new format could not
 read the old format (i.e., code to read both formats would have to
 check the version number and use different code paths for the two
 formats) and code that reads the old format could not read the new
 format. An incompatible change to the format of an existing block or
 an existing option would be such a change; the addition of a new
 block or a new option would not be such a change. An example of such
 an incompatible change would be the addition of an additional field
 to the Section Header Block, following the Minor Version field and
 before the Snaplen field; software expecting the new SHB format would
 not correctly read the old SHB format, and software expecting the old
 SHB format would not correctly read the new SHB format. (Note that a
 change to the SHB must leave the Block Type, Block Total Length,
 Byte-Order Magic, Major Version, and Minor Version fields at the same
 offsets from the beginning of the SHB and with the same lengths, must
 keep the value of the Block Type the same, must keep the two possible
 values of the Byte-Order Magic the same, depending on the block’s
 byte order, so that the rest of the SHB can be correctly
 interpreted.)

 The Minor Version would be changed only if a new version of this
 specification, for a later minor version of the file format, were
 created. Such a version would only be created if the format were to
 change in such a way that code that reads the new format could read
 the old format without checking the version number but code that
 reads the old format could not read all files in the new format. A
 backward-compatible change to the format of an existing block or an
 existing option would be such a change; the addition of a new block
 or a new option would not be such a change. An example of such a
 backward-compatible but not forward-compatible change would be a
 change to the Interface Description block (see below) to use the
 current Reserved field to indicate the presence of additional fields
 before the Options, with a zero value indicate no such fields are
 present.

 I.e., adding new block types or options would not require that either
 the Major Version or the Minor Version be changed, as code that does
 not know about the block type or option should just skip it; only if
 skipping a block or option does not work should the minor version
 number be changed.

Tuexen, et al. Expires 30 January 2023 [Page 17]

Internet-Draft pcapng July 2022

 Aside from the options defined in Section 3.5, the following options
 are valid within this block:

 +==============+======+==========+===================+
 | Name | Code | Length | Multiple allowed? |
 +==============+======+==========+===================+
 | shb_hardware | 2 | variable | no |
 +--------------+------+----------+-------------------+
 | shb_os | 3 | variable | no |
 +--------------+------+----------+-------------------+
 | shb_userappl | 4 | variable | no |
 +--------------+------+----------+-------------------+

 Table 2: Section Header Block Options

 shb_hardware:
 The shb_hardware option is a UTF-8 string containing the
 description of the hardware used to create this section. The
 string is not zero-terminated.

 Examples: "x86 Personal Computer", "Sun Sparc Workstation".

 shb_os:
 The shb_os option is a UTF-8 string containing the name of
 the operating system used to create this section. The string
 is not zero-terminated.

 Examples: "Windows XP SP2", "openSUSE 10.2".

 shb_userappl:
 The shb_userappl option is a UTF-8 string containing the name
 of the application used to create this section. The string
 is not zero-terminated.

 Examples: "dumpcap V0.99.7".

 [Open issue: does a program which re-writes a capture file change the
 original hardware/os/application info?]

4.2. Interface Description Block

 An Interface Description Block (IDB) is the container for information
 describing an interface on which packet data is captured.

 Tools that write / read the capture file associate an incrementing
 unsigned 32-bit number (starting from ’0’) to each Interface
 Definition Block, called the Interface ID for the interface in
 question. This number is unique within each Section and identifies

Tuexen, et al. Expires 30 January 2023 [Page 18]

Internet-Draft pcapng July 2022

 the interface to which the IDB refers; it is only unique inside the
 current section, so, two Sections can have different interfaces
 identified by the same Interface ID values. This unique identifier
 is referenced by other blocks, such as Enhanced Packet Blocks and
 Interface Statistic Blocks, to indicate the interface to which the
 block refers (such the interface that was used to capture the packet
 that an Enhanced Packet Block contains or to which the statistics in
 an Interface Statistic Block refer).

 Within a section, there must be an Interface Description Block for
 each interface to which another block within that section refers.
 Blocks such as an Enhanced Packet Block or an Interface Statistics
 Block contain an Interface ID value referring to a particular
 interface, and a Simple Packet Block implicitly refers to an
 interface with an Interface ID of 0. If the file does not contain
 any blocks that use an Interface ID, then the file does not need to
 have any IDBs.

 There is no requirement that all Interface Description Blocks occur
 within a section before all blocks of other types, as long as the
 Interface Description Block for an interface occurs before any block
 that refers to that interface.

 An Interface Description Block is valid only inside the section to
 which it belongs. The structure of an Interface Description Block is
 shown in Figure 10.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 0 | Block Type = 0x00000001 |
 +-+
 4 | Block Total Length |
 +-+
 8 | LinkType | Reserved |
 +-+
 12 | SnapLen |
 +-+
 16 / /
 / Options (variable) /
 / /
 +-+
 | Block Total Length |
 +-+

 Figure 10: Interface Description Block Format

 The meaning of the fields is:

Tuexen, et al. Expires 30 January 2023 [Page 19]

Internet-Draft pcapng July 2022

 * Block Type: The block type of the Interface Description Block is
 1.

 * Block Total Length: total size of this block, as described in
 Section 3.1.

 * LinkType (16 bits): an unsigned value that defines the link layer
 type of this interface. The list of Standardized Link Layer Type
 codes is available in [I-D.richardson-opsawg-pcaplinktype].

 * Reserved (16 bits): not used - MUST be filled with 0 by pcapng
 file writers, and MUST be ignored by pcapng file readers.

 * SnapLen (32 bits): an unsigned value indicating the maximum number
 of octets captured from each packet. The portion of each packet
 that exceeds this value will not be stored in the file. A value
 of zero indicates no limit.

 * Options: optionally, a list of options (formatted according to the
 rules defined in Section 3.5) can be present.

 In addition to the options defined in Section 3.5, the following
 options are valid within this block:

Tuexen, et al. Expires 30 January 2023 [Page 20]

Internet-Draft pcapng July 2022

 +================+======+=====================+===================+
 | Name | Code | Length | Multiple allowed? |
 +================+======+=====================+===================+
 | if_name | 2 | variable | no |
 +----------------+------+---------------------+-------------------+
 | if_description | 3 | variable | no |
 +----------------+------+---------------------+-------------------+
 | if_IPv4addr | 4 | 8 | yes |
 +----------------+------+---------------------+-------------------+
 | if_IPv6addr | 5 | 17 | yes |
 +----------------+------+---------------------+-------------------+
 | if_MACaddr | 6 | 6 | no |
 +----------------+------+---------------------+-------------------+
 | if_EUIaddr | 7 | 8 | no |
 +----------------+------+---------------------+-------------------+
 | if_speed | 8 | 8 | no |
 +----------------+------+---------------------+-------------------+
 | if_tsresol | 9 | 1 | no |
 +----------------+------+---------------------+-------------------+
 | if_tzone | 10 | 4 | no |
 +----------------+------+---------------------+-------------------+
 | if_filter | 11 | variable, minimum 1 | no |
 +----------------+------+---------------------+-------------------+
 | if_os | 12 | variable | no |
 +----------------+------+---------------------+-------------------+
 | if_fcslen | 13 | 1 | no |
 +----------------+------+---------------------+-------------------+
 | if_tsoffset | 14 | 8 | no |
 +----------------+------+---------------------+-------------------+
 | if_hardware | 15 | variable | no |
 +----------------+------+---------------------+-------------------+
 | if_txspeed | 16 | 8 | no |
 +----------------+------+---------------------+-------------------+
 | if_rxspeed | 17 | 8 | no |
 +----------------+------+---------------------+-------------------+

 Table 3: Interface Description Block Options

 if_name:
 The if_name option is a UTF-8 string containing the name of
 the device used to capture data. The string is not zero-
 terminated.

 Examples: "eth0",
 "\Device\NPF_{AD1CE675-96D0-47C5-ADD0-2504B9126B68}".

 if_description:

Tuexen, et al. Expires 30 January 2023 [Page 21]

Internet-Draft pcapng July 2022

 The if_description option is a UTF-8 string containing the
 description of the device used to capture data. The string
 is not zero-terminated.

 Examples: "Wi-Fi", "Local Area Connection", "Wireless Network
 Connection", "First Ethernet Interface".

 if_IPv4addr:
 The if_IPv4addr option is an IPv4 network address and
 corresponding netmask for the interface. The first four
 octets are the IP address, and the next four octets are the
 netmask. This option can be repeated multiple times within
 the same Interface Description Block when multiple IPv4
 addresses are assigned to the interface. Note that the IP
 address and netmask are both treated as four octets, one for
 each octet of the address or mask; they are not 32-bit
 numbers, and thus the endianness of the SHB does not affect
 this field’s value.

 Examples: ’192 168 1 1 255 255 255 0’.

 if_IPv6addr:
 The if_IPv6addr option is an IPv6 network address and
 corresponding prefix length for the interface. The first 16
 octets are the IP address and the next octet is the prefix
 length. This option can be repeated multiple times within
 the same Interface Description Block when multiple IPv6
 addresses are assigned to the interface.

 Example: 2001:0db8:85a3:08d3:1319:8a2e:0370:7344/64 is written (in
 hex) as ’20 01 0d b8 85 a3 08 d3 13 19 8a 2e 03 70 73 44 40’.

 if_MACaddr:
 The if_MACaddr option is the Interface Hardware MAC address
 (48 bits), if available.

 Example: ’00 01 02 03 04 05’.

 if_EUIaddr:
 The if_EUIaddr option is the Interface Hardware EUI address
 (64 bits), if available.

 Example: ’02 34 56 FF FE 78 9A BC’.

 if_speed:
 The if_speed option is a 64-bit unsigned value indicating the
 interface speed, in bits per second.

Tuexen, et al. Expires 30 January 2023 [Page 22]

Internet-Draft pcapng July 2022

 Example: the 64-bit decimal number 100000000 for 100Mbps.

 if_tsresol:
 The if_tsresol option identifies the resolution of
 timestamps. If the Most Significant Bit is equal to zero,
 the remaining bits indicates the resolution of the timestamp
 as a negative power of 10 (e.g. 6 means microsecond
 resolution, timestamps are the number of microseconds since
 1970-01-01 00:00:00 UTC). If the Most Significant Bit is
 equal to one, the remaining bits indicates the resolution as
 negative power of 2 (e.g. 10 means 1/1024 of second). If
 this option is not present, a resolution of 10^-6 is assumed
 (i.e. timestamps have the same resolution of the standard
 ’libpcap’ timestamps).

 Example: ’6’.

 if_tzone:
 The if_tzone option identifies the time zone for GMT support
 (TODO: specify better).

 Example: TODO: give a good example.

 if_filter:
 The if_filter option identifies the filter (e.g. "capture
 only TCP traffic") used to capture traffic. The first octet
 of the Option Data keeps a code of the filter used (e.g. if
 this is a libpcap string, or BPF bytecode, and more). More
 details about this format will be presented in Appendix XXX
 (TODO). (TODO: better use different options for different
 fields? e.g. if_filter_pcap, if_filter_bpf, ...)

 Example: ’00’"tcp port 23 and host 192.0.2.5".

 if_os:
 The if_os option is a UTF-8 string containing the name of the
 operating system of the machine in which this interface is
 installed. This can be different from the same information
 that can be contained by the Section Header Block
 (Section 4.1) because the capture can have been done on a
 remote machine. The string is not zero-terminated.

 Examples: "Windows XP SP2", "openSUSE 10.2".

 if_fcslen:
 The if_fcslen option is an 8-bit unsigned integer value that
 specifies the length of the Frame Check Sequence (in bits)
 for this interface. For link layers whose FCS length can

Tuexen, et al. Expires 30 January 2023 [Page 23]

Internet-Draft pcapng July 2022

 change during time, the Enhanced Packet Block epb_flags
 Option can be used in each Enhanced Packet Block (see
 Section 4.3.1).

 Example: ’4’.

 if_tsoffset:
 The if_tsoffset option is a 64-bit signed integer value that
 specifies an offset (in seconds) that must be added to the
 timestamp of each packet to obtain the absolute timestamp of
 a packet. If the option is missing, the timestamps stored in
 the packet MUST be considered absolute timestamps. The time
 zone of the offset can be specified with the option if_tzone.
 TODO: won’t a if_tsoffset_low for fractional second offsets
 be useful for highly synchronized capture systems?

 Example: ’1234’.

 if_hardware:
 The if_hardware option is a UTF-8 string containing the
 description of the interface hardware. The string is not
 zero-terminated.

 Examples: "Broadcom NetXtreme", "Intel(R) PRO/1000 MT Network
 Connection", "NETGEAR WNA1000Mv2 N150 Wireless USB Micro Adapter".

 if_txspeed:
 The if_txrxspeeds option is a 64-bit unsigned value
 indicating the interface transmit speed in bits per second.

 Example: the 64-bit decimal number 1024000 for 1024Kbps.

 if_rxspeed:
 The if_rxspeed option is a 64-bit unsigned value indicating
 the interface receive speed, in bits per second.

 Example: the 64-bit decimal number 8192000 for 8192Kbps.

 If the interface transmit speed and receive speed are the same, the
 if_speed option MUST be used and the if_txspeed and if_rxspeed
 options MUST NOT be used. If the transmit speed is unknown, the
 if_speed and if_txspeed options MUST NOT be used; if the receive
 speed is unknown, the if_speed and if_rxspeed options MUST NOT be
 used.

Tuexen, et al. Expires 30 January 2023 [Page 24]

Internet-Draft pcapng July 2022

4.3. Enhanced Packet Block

 An Enhanced Packet Block (EPB) is the standard container for storing
 the packets coming from the network. The Enhanced Packet Block is
 optional because packets can be stored either by means of this block
 or the Simple Packet Block, which can be used to speed up capture
 file generation; or a file may have no packets in it. The format of
 an Enhanced Packet Block is shown in Figure 11.

 The Enhanced Packet Block is an improvement over the original, now
 obsolete, Packet Block (Appendix A):

 * it stores the Interface Identifier as a 32-bit integer value.
 This is a requirement when a capture stores packets coming from a
 large number of interfaces;

 * unlike the Packet Block (Appendix A), the number of packets
 dropped by the capture system between this packet and the previous
 one is not stored in the header, but rather in an option of the
 block itself.

Tuexen, et al. Expires 30 January 2023 [Page 25]

Internet-Draft pcapng July 2022

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 0 | Block Type = 0x00000006 |
 +-+
 4 | Block Total Length |
 +-+
 8 | Interface ID |
 +-+
 12 | Timestamp (High) |
 +-+
 16 | Timestamp (Low) |
 +-+
 20 | Captured Packet Length |
 +-+
 24 | Original Packet Length |
 +-+
 28 / /
 / Packet Data /
 / variable length, padded to 32 bits /
 / /
 +-+
 / /
 / Options (variable) /
 / /
 +-+
 | Block Total Length |
 +-+

 Figure 11: Enhanced Packet Block Format

 The Enhanced Packet Block has the following fields:

 * Block Type: The block type of the Enhanced Packet Block is 6.

 * Block Total Length: total size of this block, as described in
 Section 3.1.

 * Interface ID (32 bits): an unsigned value that specifies the
 interface on which this packet was received or transmitted; the
 correct interface will be the one whose Interface Description
 Block (within the current Section of the file) is identified by
 the same number (see Section 4.2) of this field. The interface ID
 MUST be valid, which means that an matching interface description
 block MUST exist.

Tuexen, et al. Expires 30 January 2023 [Page 26]

Internet-Draft pcapng July 2022

 * Timestamp (High) and Timestamp (Low): upper 32 bits and lower 32
 bits of a 64-bit timestamp. The timestamp is a single 64-bit
 unsigned integer that represents the number of units of time that
 have elapsed since 1970-01-01 00:00:00 UTC. The length of a unit
 of time is specified by the ’if_tsresol’ option (see Figure 10) of
 the Interface Description Block referenced by this packet. Note
 that, unlike timestamps in the libpcap file format, timestamps in
 Enhanced Packet Blocks are not saved as two 32-bit values that
 represent the seconds and microseconds that have elapsed since
 1970-01-01 00:00:00 UTC. Timestamps in Enhanced Packet Blocks are
 saved as two 32-bit words that represent the upper and lower 32
 bits of a single 64-bit quantity.

 * Captured Packet Length (32 bits): an unsigned value that indicates
 the number of octets captured from the packet (i.e. the length of
 the Packet Data field). It will be the minimum value among the
 Original Packet Length and the snapshot length for the interface
 (SnapLen, defined in Figure 10). The value of this field does not
 include the padding octets added at the end of the Packet Data
 field to align the Packet Data field to a 32-bit boundary.

 * Original Packet Length (32 bits): an unsigned value that indicates
 the actual length of the packet when it was transmitted on the
 network. It can be different from the Captured Packet Length if
 the packet has been truncated by the capture process.

 * Packet Data: the data coming from the network, including link-
 layer headers. The actual length of this field is Captured Packet
 Length plus the padding to a 32-bit boundary. The format of the
 link-layer headers depends on the LinkType field specified in the
 Interface Description Block (see Section 4.2) and it is specified
 in the entry for that format in
 [I-D.richardson-opsawg-pcaplinktype].

 * Options: optionally, a list of options (formatted according to the
 rules defined in Section 3.5) can be present.

 In addition to the options defined in Section 3.5, the following
 options are valid within this block:

Tuexen, et al. Expires 30 January 2023 [Page 27]

Internet-Draft pcapng July 2022

 +===============+======+========================+===================+
 | Name | Code | Length | Multiple |
 | | | | allowed? |
 +===============+======+========================+===================+
 | epb_flags | 2 | 4 | no |
 +---------------+------+------------------------+-------------------+
 | epb_hash | 3 | variable, minimum hash | yes |
 | | | type-dependent | |
 +---------------+------+------------------------+-------------------+
 | epb_dropcount | 4 | 8 | no |
 +---------------+------+------------------------+-------------------+
 | epb_packetid | 5 | 8 | no |
 +---------------+------+------------------------+-------------------+
 | epb_queue | 6 | 4 | no |
 +---------------+------+------------------------+-------------------+
 | epb_verdict | 7 | variable, minimum | yes |
 | | | verdict type-dependent | |
 +---------------+------+------------------------+-------------------+

 Table 4: Enhanced Packet Block Options

 epb_flags:
 The epb_flags option is a 32-bit flags word containing link-
 layer information. A complete specification of the allowed
 flags can be found in Section 4.3.1.

 Example: ’0’.

 epb_hash:
 The epb_hash option contains a hash of the packet. The first
 octet specifies the hashing algorithm, while the following
 octets contain the actual hash, whose size depends on the
 hashing algorithm, and hence from the value in the first
 octet. The hashing algorithm can be: 2s complement
 (algorithm octet = 0, size = XXX), XOR (algorithm octet = 1,
 size=XXX), CRC32 (algorithm octet = 2, size = 4), MD-5
 (algorithm octet = 3, size = 16), SHA-1 (algorithm octet = 4,
 size = 20), Toeplitz (algorithm octet = 5, size = 4). The
 hash covers only the packet, not the header added by the
 capture driver: this gives the possibility to calculate it
 inside the network card. The hash allows easier comparison/
 merging of different capture files, and reliable data
 transfer between the data acquisition system and the capture
 library.

 Examples: ’02 EC 1D 87 97’, ’03 45 6E C2 17 7C 10 1E 3C 2E 99 6E C2
 9A 3D 50 8E’.

Tuexen, et al. Expires 30 January 2023 [Page 28]

Internet-Draft pcapng July 2022

 epb_dropcount:
 The epb_dropcount option is a 64-bit unsigned integer value
 specifying the number of packets lost (by the interface and
 the operating system) between this packet and the preceding
 one for the same interface or, for the first packet for an
 interface, between this packet and the start of the capture
 process.

 Example: ’0’.

 epb_packetid:
 The epb_packetid option is a 64-bit unsigned integer that
 uniquely identifies the packet. If the same packet is seen
 by multiple interfaces and there is a way for the capture
 application to correlate them, the same epb_packetid value
 must be used. An example could be a router that captures
 packets on all its interfaces in both directions. When a
 packet hits interface A on ingress, an EPB entry gets
 created, TTL gets decremented, and right before it egresses
 on interface B another EPB entry gets created in the trace
 file. In this case, two packets are in the capture file,
 which are not identical but the epb_packetid can be used to
 correlate them.

 Example: ’0’.

 epb_queue:
 The epb_queue option is a 32-bit unsigned integer that
 identifies on which queue of the interface the specific
 packet was received.

 Example: ’0’.

 epb_verdict:
 The epb_verdict option stores a verdict of the packet. The
 verdict indicates what would be done with the packet after
 processing it. For example, a firewall could drop the
 packet. This verdict can be set by various components, i.e.
 Hardware, Linux’s eBPF TC or XDP framework, etc. etc. The
 first octet specifies the verdict type, while the following
 octets contain the actual verdict data, whose size depends on
 the verdict type, and hence from the value in the first
 octet. The verdict type can be: Hardware (type octet = 0,
 size = variable), Linux_eBPF_TC (type octet = 1, size = 8
 (64-bit unsigned integer), value = TC_ACT_* as defined in the
 Linux pck_cls.h (https://git.kernel.org/pub/scm/linux/kernel/
 git/torvalds/linux.git/tree/include/uapi/linux/pkt_cls.h)
 include), Linux_eBPF_XDP (type octet = 2, size = 8 (64-bit

Tuexen, et al. Expires 30 January 2023 [Page 29]

Internet-Draft pcapng July 2022

 unsigned integer), value = xdp_action as defined in the Linux
 pbf.h (https://git.kernel.org/pub/scm/linux/kernel/git/torval
 ds/linux.git/tree/include/uapi/linux/bpf.h) include).

 Example: ’02 00 00 00 00 00 00 00 02’ for Linux_eBPF_XDP with verdict
 XDP_PASS.

4.3.1. Enhanced Packet Block Flags Word

 The Enhanced Packet Block Flags Word is a 32-bit value that contains
 link-layer information about the packet.

 The word is encoded as an unsigned 32-bit integer, using the
 endianness of the Section Header Block scope it is in. In the
 following table, the bits are numbered with 0 being the least-
 significant bit and 31 being the most-significant bit of the 32-bit
 unsigned integer. The meaning of the bits is the following:

 +========+==+
 | Bit | Description |
 | Number | |
 +========+==+
 | 0-1 | Inbound / Outbound packet (00 = information not |
 | | available, 01 = inbound, 10 = outbound) |
 +--------+--+
 | 2-4 | Reception type (000 = not specified, 001 = unicast, |
 | | 010 = multicast, 011 = broadcast, 100 = |
 | | promiscuous). |
 +--------+--+
 | 5-8 | FCS length, in octets (0000 if this information is |
 | | not available). This value overrides the if_fcslen |
 | | option of the Interface Description Block, and is |
 | | used with those link layers (e.g. PPP) where the |
 | | length of the FCS can change during time. |
 +--------+--+
 | 9-15 | Reserved (MUST be set to zero). |
 +--------+--+
 | 16-31 | link-layer-dependent errors (Bit 31 = symbol error, |
 | | Bit 30 = preamble error, Bit 29 = Start Frame |
 | | Delimiter error, Bit 28 = unaligned frame error, Bit |
 | | 27 = wrong Inter Frame Gap error, Bit 26 = packet |
 | | too short error, Bit 25 = packet too long error, Bit |
 | | 24 = CRC error, other?? are 16 bit enough?). |
 +--------+--+

 Table 5

Tuexen, et al. Expires 30 January 2023 [Page 30]

Internet-Draft pcapng July 2022

 NOTE: in earlier versions of this specification, the bits were
 specified as being numbered with 0 being the most-significant bit and
 31 being the least-significant bit of the 32-bit unsigned integer,
 rather than with 0 being the least-significant bit and 31 being the
 most-significant bit. Several implementations number the bits with 0
 being the least-significant bit, and no known implementations number
 them with 0 being the most-significant bit, so the specification was
 changed to reflect that reality.

4.4. Simple Packet Block

 The Simple Packet Block (SPB) is a lightweight container for storing
 the packets coming from the network. Its presence is optional.

 A Simple Packet Block is similar to an Enhanced Packet Block (see
 Section 4.3), but it is smaller, simpler to process and contains only
 a minimal set of information. This block is preferred to the
 standard Enhanced Packet Block when performance or space occupation
 are critical factors, such as in sustained traffic capture
 applications. A capture file can contain both Enhanced Packet Blocks
 and Simple Packet Blocks: for example, a capture tool could switch
 from Enhanced Packet Blocks to Simple Packet Blocks when the hardware
 resources become critical.

 The Simple Packet Block does not contain the Interface ID field.
 Therefore, it MUST be assumed that all the Simple Packet Blocks have
 been captured on the interface previously specified in the first
 Interface Description Block.

 Figure 12 shows the format of the Simple Packet Block.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 0 | Block Type = 0x00000003 |
 +-+
 4 | Block Total Length |
 +-+
 8 | Original Packet Length |
 +-+
 12 / /
 / Packet Data /
 / variable length, padded to 32 bits /
 / /
 +-+
 | Block Total Length |
 +-+

Tuexen, et al. Expires 30 January 2023 [Page 31]

Internet-Draft pcapng July 2022

 Figure 12: Simple Packet Block Format

 The Simple Packet Block has the following fields:

 * Block Type: The block type of the Simple Packet Block is 3.

 * Block Total Length: total size of this block, as described in
 Section 3.1.

 * Original Packet Length (32 bits): an unsigned value indicating the
 actual length of the packet when it was transmitted on the
 network. It can be different from length of the Packet Data
 field’s length if the packet has been truncated by the capture
 process, in which case the SnapLen value in Section 4.2 will be
 less than this Original Packet Length value, and the SnapLen value
 MUST be used to determine the size of the Packet Data field
 length.

 * Packet Data: the data coming from the network, including link-
 layer headers. The length of this field can be derived from the
 field Block Total Length, present in the Block Header, and it is
 the minimum value among the SnapLen (present in the Interface
 Description Block) and the Original Packet Length (present in this
 header). The format of the data within this Packet Data field
 depends on the LinkType field specified in the Interface
 Description Block (see Section 4.2) and it is specified in the
 entry for that format in [I-D.richardson-opsawg-pcaplinktype].

 The Simple Packet Block does not contain the timestamp because this
 is often one of the most costly operations on PCs. Additionally,
 there are applications that do not require it; e.g. an Intrusion
 Detection System is interested in packets, not in their timestamp.

 A Simple Packet Block cannot be present in a Section that has more
 than one interface because of the impossibility to refer to the
 correct one (it does not contain any Interface ID field).

 The Simple Packet Block is very efficient in term of disk space: a
 snapshot whose length is 100 octets requires only 16 octets of
 overhead, which corresponds to an efficiency of more than 86%.

Tuexen, et al. Expires 30 January 2023 [Page 32]

Internet-Draft pcapng July 2022

4.5. Name Resolution Block

 The Name Resolution Block (NRB) is used to support the correlation of
 numeric addresses (present in the captured packets) and their
 corresponding canonical names and it is optional. Having the literal
 names saved in the file prevents the need for performing name
 resolution at a later time, when the association between names and
 addresses may be different from the one in use at capture time.
 Moreover, the NRB avoids the need for issuing a lot of DNS requests
 every time the trace capture is opened, and also provides name
 resolution when reading the capture with a machine not connected to
 the network.

 A Name Resolution Block is often placed at the beginning of the file,
 but no assumptions can be taken about its position. Multiple NRBs
 can exist in a pcapng file, either due to memory constraints or
 because additional name resolutions were performed by file processing
 tools, like network analyzers.

 A Name Resolution Block need not contain any Records, except the
 nrb_record_end Record which MUST be the last Record. The addresses
 and names in NRB Records MAY be repeated multiple times; i.e., the
 same IP address may resolve to multiple names, the same name may
 resolve to the multiple IP addresses, and even the same address-to-
 name pair may appear multiple times, in the same NRB or across NRBs.

 The format of the Name Resolution Block is shown in Figure 13.

Tuexen, et al. Expires 30 January 2023 [Page 33]

Internet-Draft pcapng July 2022

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 0 | Block Type = 0x00000004 |
 +-+
 4 | Block Total Length |
 +-+
 8 | Record Type | Record Value Length |
 +-+
 12 / Record Value /
 / variable length, padded to 32 bits /
 +-+
 . .
 other records
 . .
 +-+
 | Record Type = nrb_record_end | Record Value Length = 0 |
 +-+
 / /
 / Options (variable) /
 / /
 +-+
 | Block Total Length |
 +-+

 Figure 13: Name Resolution Block Format

 The Name Resolution Block has the following fields:

 * Block Type: The block type of the Name Resolution Block is 4.

 * Block Total Length: total size of this block, as described in
 Section 3.1.

 This is followed by zero or more Name Resolution Records (in the TLV
 format), each of which contains an association between a network
 address and a name. An nrb_record_end MUST be added after the last
 Record, and MUST exist even if there are no other Records in the NRB.
 There are currently three possible types of records:

Tuexen, et al. Expires 30 January 2023 [Page 34]

Internet-Draft pcapng July 2022

 +=================+========+==========+
 | Name | Code | Length |
 +=================+========+==========+
 | nrb_record_end | 0x0000 | 0 |
 +-----------------+--------+----------+
 | nrb_record_ipv4 | 0x0001 | variable |
 +-----------------+--------+----------+
 | nrb_record_ipv6 | 0x0002 | variable |
 +-----------------+--------+----------+

 Table 6: Name Resolution Block Records

 nrb_record_end:
 The nrb_record_end record delimits the end of name resolution
 records. This record is needed to determine when the list of
 name resolution records has ended and some options (if any)
 begin.

 nrb_record_ipv4:
 The nrb_record_ipv4 record specifies an IPv4 address
 (contained in the first 4 octets), followed by one or more
 zero-terminated UTF-8 strings containing the DNS entries for
 that address. The minimum valid Record Length for this
 Record Type is thus 6: 4 for the IP octets, 1 character, and
 a zero-value octet terminator. Note that the IP address is
 treated as four octets, one for each octet of the IP address;
 it is not a 32-bit word, and thus the endianness of the SHB
 does not affect this field’s value.

 Example: ’127 0 0 1’"localhost".

 [Open issue: is an empty string (i.e., just a zero-value octet)
 valid?]

 nrb_record_ipv6:
 The nrb_record_ipv6 record specifies an IPv6 address
 (contained in the first 16 octets), followed by one or more
 zero-terminated strings containing the DNS entries for that
 address. The minimum valid Record Length for this Record
 Type is thus 18: 16 for the IP octets, 1 character, and a
 zero-value octet terminator.

 Example: ’20 01 0d b8 00 00 00 00 00 00 00 00 12 34 56 78’"somehost".

 [Open issue: is an empty string (i.e., just a zero-value octet)
 valid?]

Tuexen, et al. Expires 30 January 2023 [Page 35]

Internet-Draft pcapng July 2022

 Record Types other than those specified earlier MUST be ignored and
 skipped past. More Record Types will likely be defined in the
 future, and MUST NOT break backwards compatibility.

 Each Record Value is aligned to and padded to a 32-bit boundary. The
 corresponding Record Value Length reflects the actual length of the
 Record Value; it does not include the lengths of the Record Type
 field, the Record Value Length field, any padding for the Record
 Value, or anything after the Record Value. For Record Types with
 name strings, the Record Length does include the zero-value octet
 terminating that string. A Record Length of 0 is valid, unless
 indicated otherwise.

 After the list of Name Resolution Records, optionally, a list of
 options (formatted according to the rules defined in Section 3.5) can
 be present.

 In addition to the options defined in Section 3.5, the following
 options are valid within this block:

 +===============+======+==========+===================+
 | Name | Code | Length | Multiple allowed? |
 +===============+======+==========+===================+
 | ns_dnsname | 2 | variable | no |
 +---------------+------+----------+-------------------+
 | ns_dnsIP4addr | 3 | 4 | no |
 +---------------+------+----------+-------------------+
 | ns_dnsIP6addr | 4 | 16 | no |
 +---------------+------+----------+-------------------+

 Table 7: Name Resolution Block Options

 ns_dnsname:
 The ns_dnsname option is a UTF-8 string containing the name
 of the machine (DNS server) used to perform the name
 resolution. The string is not zero-terminated.

 Example: "our_nameserver".

 ns_dnsIP4addr:
 The ns_dnsIP4addr option specifies the IPv4 address of the
 DNS server. Note that the IP address is treated as four
 octets, one for each octet of the IP address; it is not a
 32-bit word, and thus the endianness of the SHB does not
 affect this field’s value.

 Example: ’192 168 0 1’.

Tuexen, et al. Expires 30 January 2023 [Page 36]

Internet-Draft pcapng July 2022

 ns_dnsIP6addr:
 The ns_dnsIP6addr option specifies the IPv6 address of the
 DNS server.

 Example: ’20 01 0d b8 00 00 00 00 00 00 00 00 12 34 56 78’.

4.6. Interface Statistics Block

 The Interface Statistics Block (ISB) contains the capture statistics
 for a given interface and it is optional. The statistics are
 referred to the interface defined in the current Section identified
 by the Interface ID field. An Interface Statistics Block is normally
 placed at the end of the file, but no assumptions can be taken about
 its position - it can even appear multiple times for the same
 interface.

 The format of the Interface Statistics Block is shown in Figure 14.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 0 | Block Type = 0x00000005 |
 +-+
 4 | Block Total Length |
 +-+
 8 | Interface ID |
 +-+
 12 | Timestamp (High) |
 +-+
 16 | Timestamp (Low) |
 +-+
 20 / /
 / Options (variable) /
 / /
 +-+
 | Block Total Length |
 +-+

 Figure 14: Interface Statistics Block Format

 The fields have the following meaning:

 * Block Type: The block type of the Interface Statistics Block is 5.

 * Block Total Length: total size of this block, as described in
 Section 3.1.

Tuexen, et al. Expires 30 January 2023 [Page 37]

Internet-Draft pcapng July 2022

 * Interface ID: specifies the interface these statistics refers to;
 the correct interface will be the one whose Interface Description
 Block (within the current Section of the file) is identified by
 same number (see Section 4.2) of this field.

 * Timestamp: time this statistics refers to. The format of the
 timestamp is the same already defined in the Enhanced Packet Block
 (Section 4.3); the length of a unit of time is specified by the
 ’if_tsresol’ option (see Figure 10) of the Interface Description
 Block referenced by this packet.

 * Options: optionally, a list of options (formatted according to the
 rules defined in Section 3.5) can be present.

 All the statistic fields are defined as options in order to deal with
 systems that do not have a complete set of statistics. Therefore, In
 addition to the options defined in Section 3.5, the following options
 are valid within this block:

 +==================+======+========+===================+
 | Name | Code | Length | Multiple allowed? |
 +==================+======+========+===================+
 | isb_starttime | 2 | 8 | no |
 +------------------+------+--------+-------------------+
 | isb_endtime | 3 | 8 | no |
 +------------------+------+--------+-------------------+
 | isb_ifrecv | 4 | 8 | no |
 +------------------+------+--------+-------------------+
 | isb_ifdrop | 5 | 8 | no |
 +------------------+------+--------+-------------------+
 | isb_filteraccept | 6 | 8 | no |
 +------------------+------+--------+-------------------+
 | isb_osdrop | 7 | 8 | no |
 +------------------+------+--------+-------------------+
 | isb_usrdeliv | 8 | 8 | no |
 +------------------+------+--------+-------------------+

 Table 8: Interface Statistics Block Options

 isb_starttime:
 The isb_starttime option specifies the time the capture
 started; time will be stored in two blocks of four octets
 each. The format of the timestamp is the same as the one
 defined in the Enhanced Packet Block (Section 4.3); the
 length of a unit of time is specified by the ’if_tsresol’
 option (see Figure 10) of the Interface Description Block
 referenced by this packet.

Tuexen, et al. Expires 30 January 2023 [Page 38]

Internet-Draft pcapng July 2022

 Example: ’96 c3 04 00 73 89 6a 65’, in Little Endian, decodes to
 2012-06-29 06:17:00.834163 UTC.

 isb_endtime:
 The isb_endtime option specifies the time the capture ended;
 time will be stored in two blocks of four octets each. The
 format of the timestamp is the same as the one defined in the
 Enhanced Packet Block (Section 4.3); the length of a unit of
 time is specified by the ’if_tsresol’ option (see Figure 10)
 of the Interface Description Block referenced by this packet.

 Example: ’97 c3 04 00 aa 47 ca 64’, in Little Endian, decodes to
 2012-06-29 07:28:25.298858 UTC.

 isb_ifrecv:
 The isb_ifrecv option specifies the 64-bit unsigned integer
 number of packets received from the physical interface
 starting from the beginning of the capture.

 Example: the decimal number 100.

 isb_ifdrop:
 The isb_ifdrop option specifies the 64-bit unsigned integer
 number of packets dropped by the interface due to lack of
 resources starting from the beginning of the capture.

 Example: ’0’.

 isb_filteraccept:
 The isb_filteraccept option specifies the 64-bit unsigned
 integer number of packets accepted by filter starting from
 the beginning of the capture.

 Example: the decimal number 100.

 isb_osdrop:
 The isb_osdrop option specifies the 64-bit unsigned integer
 number of packets dropped by the operating system starting
 from the beginning of the capture.

 Example: ’0’.

 isb_usrdeliv:

Tuexen, et al. Expires 30 January 2023 [Page 39]

Internet-Draft pcapng July 2022

 The isb_usrdeliv option specifies the 64-bit unsigned integer
 number of packets delivered to the user starting from the
 beginning of the capture. The value contained in this field
 can be different from the value ’isb_filteraccept -
 isb_osdrop’ because some packets could still be in the OS
 buffers when the capture ended.

 Example: ’0’.

 All the fields that refer to packet counters are 64-bit values,
 represented with the octet order of the current section. Special
 care must be taken in accessing these fields: since all the blocks
 are aligned to a 32-bit boundary, such fields are not guaranteed to
 be aligned on a 64-bit boundary.

4.7. Decryption Secrets Block

 A Decryption Secrets Block (DSB) stores (session) secrets that enable
 decryption of packets within the capture file. The format of these
 secrets is defined by the Secrets Type.

 Multiple DSBs can exist in a pcapng file, but they SHOULD be written
 before packet blocks that require those secrets. Tools MAY limit
 decryption to secrets that appear before packet blocks.

 The structure of a Decryption Secrets Block is shown in Figure 15.

Tuexen, et al. Expires 30 January 2023 [Page 40]

Internet-Draft pcapng July 2022

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 0 | Block Type = 0x0000000A |
 +-+
 4 | Block Total Length |
 +-+
 8 | Secrets Type |
 +-+
 12 | Secrets Length |
 +-+
 16 / /
 / Secrets Data /
 / (variable length, padded to 32 bits) /
 / /
 +-+
 / /
 / Options (variable) /
 / /
 +-+
 / Block Total Length /
 +-+

 Figure 15: Decryption Secrets Block Format

 The Decryption Secrets Block has the following fields.

 * Block Type: The block type of the Decryption Secrets Block is 10.

 * Block Total Length: total size of this block, as described in
 Section 3.1.

 * Secrets Type (32 bits): an unsigned integer identifier that
 describes the format of the following Secrets field. Requests for
 new Secrets Type codes should be made by creating a pull request
 to update this document as described in Section 10.1.

 * Secrets Length (32 bits): an unsigned integer that indicates the
 size of the following Secrets field, without any padding octets.

 * Secrets Data: binary data containing secrets, padded to a 32 bit
 boundary.

 * Options: optionally, a list of options (formatted according to the
 rules defined in Section 3.5) can be present. No DSB-specific
 options are currently defined.

 The following is a list of Secrets Types.

Tuexen, et al. Expires 30 January 2023 [Page 41]

Internet-Draft pcapng July 2022

 0x544c534b:
 TLS Key Log. This format is described at NSS Key Log Format
 (https://developer.mozilla.org/en-
 US/docs/Mozilla/Projects/NSS/Key_Log_Format). Every line
 MUST be properly terminated with either carriage return and
 linefeed (’\r\n’) or linefeed (’\n’). Tools MUST be able to
 handle both line endings.

 0x57474b4c:
 WireGuard Key Log. Every line consists of the key type,
 equals sign (’=’), and the base64-encoded 32-byte key with
 optional spaces before and in between. The key type is one
 of LOCAL_STATIC_PRIVATE_KEY, REMOTE_STATIC_PUBLIC_KEY,
 LOCAL_EPHEMERAL_PRIVATE_KEY, or PRESHARED|_KEY. This matches
 the output of extract-handshakes.sh
 (https://git.zx2c4.com/WireGuard/tree/contrib/examples/
 extract-handshakes/README), which is part of the WireGuard
 (https://www.wireguard.com/) project. A PRESHARED_KEY line
 is linked to a session matched by a previous
 LOCAL_EPHEMERAL_PRIVATE_KEY line. Every line MUST be
 properly terminated with either carriage return and linefeed
 (’\r\n’) or linefeed (’\n’). Tools MUST be able to handle
 both line endings.

 Warning: LOCAL_STATIC_PRIVATE_KEY and potentially PRESHARED_KEY are
 long-term secrets, users SHOULD only store non-production keys, or
 ensure proper protection of the pcapng file.

 0x5a4e574b:
 ZigBee NWK Key and ZigBee PANID for that network. Network
 Key as described in the ZigBee Specification
 (https://zigbeealliance.org/) 05-3473-21 (R21) section 4.2.2.
 The NWK Key is a 16 octet binary AES-128 key used to secure
 NWK Level frames within a single PAN. The NWK key is
 immediately followed by the 2 octet (16 bit) network PANID in
 little endian format. If and when the NWK Key changes a new
 DSB will contain the new NWK Key.

 0x5a415053:
 ZigBee APS Key. Application Support Link Key as described in
 the ZigBee Specification (https://zigbeealliance.org/)
 05-3473-21 (R21) section 4.4. Each 16 octet binary AES-128
 key secures frames exchanged between a pair of network nodes.
 The APS Key is immediately followed by the 2 octet (16 bit)
 network PANID in little endian format. The PANID is followed
 by the 2 octet (16 bit) short addresses, in little endian
 format, of the nodes to which the APS Key applies. The
 numerically lower short address shall come first. There is

Tuexen, et al. Expires 30 January 2023 [Page 42]

Internet-Draft pcapng July 2022

 an APS Key DSB for each node pair for which the Link Key is
 known. As new links are formed, new DSBs contain the new
 Keys. If the APS Key changes for an existing link, it is
 contained in a new DSB with the new APS Key.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---+
 0 | Block Type = 0x0000000A |
 +---+
 4 | Block Total Length |
 +-+
 8 | Secrets Type = 0x5a4e574b |
 +-+
 12 | Secrets Length |
 +-+
 16 | AES-128 |
 | NKW Key |
 | (16 octets) |
 | (128 bits) |
 +-+
 32 | PAN ID | padding (0) |
 +-+
 36 / /
 / Options (variable) /
 / /
 +-+
 / Block Total Length /
 +---+

 Figure 16: ZigBee NWK Key Data Format

Tuexen, et al. Expires 30 January 2023 [Page 43]

Internet-Draft pcapng July 2022

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---+
 0 | Block Type = 0x0000000A |
 +---+
 4 | Block Total Length |
 +-+
 8 | Secrets Type = 0x5a415053 |
 +-+
 12 | Secrets Length |
 +-+
 16 | AES-128 |
 | APS Key |
 | (16 octets) |
 | (128 bits) |
 +-+
 32 | PAN ID | Low Node Short Address |
 +-+
 36 | High Node Short Address | padding (0) |
 +-+
 40 / /
 / Options (variable) /
 / /
 +-+
 / Block Total Length /
 +---+

 Figure 17: ZigBee APS Key Data Format

4.8. Custom Block

 A Custom Block (CB) is the container for storing custom data that is
 not part of another block; for storing custom data as part of another
 block, see Section 3.5.1. The Custom Block is optional, can be
 repeated any number of times, and can appear before or after any
 other block except the first Section Header Block which must come
 first in the file. Different Custom Blocks, of different type codes
 and/or different Private Enterprise Numbers, may be used in the same
 pcapng file. The format of a Custom Block is shown in Figure 18.

Tuexen, et al. Expires 30 January 2023 [Page 44]

Internet-Draft pcapng July 2022

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 0 | Block Type = 0x00000BAD or 0x40000BAD |
 +-+
 4 | Block Total Length |
 +-+
 8 | Private Enterprise Number (PEN) |
 +-+
 12 / /
 / Custom Data /
 / variable length, padded to 32 bits /
 / /
 +-+
 / /
 / Options (variable) /
 / /
 +-+
 | Block Total Length |
 +-+

 Figure 18: Custom Block Format

 The Custom Block uses the type code 0x00000BAD (2989 in decimal) for
 a custom block that pcapng re-writers can copy into new files, and
 the type code 0x40000BAD (1073744813 in decimal) for one that should
 not be copied. See Section 5.2 for details.

 The Custom Block has the following fields:

 * Block Type: The block type of the Custom Block is 0x00000BAD or
 0x40000BAD, as described previously.

 * Block Total Length: total size of this block, as described in
 Section 3.1.

 * Private Enterprise Number (32 bits): An IANA-assigned Private
 Enterprise Number identifying the organization which defined the
 Custom Block. See Section 5.1 for details. The PEN MUST be
 encoded using the same endianness as the Section Header Block it
 is within the scope of.

 * Custom Data: the custom data, padded to a 32 bit boundary.

 * Options: optionally, a list of options (formatted according to the
 rules defined in Section 3.5) can be present. Note that custom
 options for the Custom Block still use the custom option format
 and type code, as described in Section 3.5.1.

Tuexen, et al. Expires 30 January 2023 [Page 45]

Internet-Draft pcapng July 2022

5. Vendor-Specific Custom Extensions

 This section uses the term "vendor" to describe an organization which
 extends the pcapng file with custom, proprietary blocks or options.
 It should be noted, however, that the "vendor" is just an abstract
 entity that agrees on a custom extension format: for example it may
 be a manufacturer, industry association, an individual user, or
 collective group of users.

5.1. Supported Use-Cases

 There are two different supported use-cases for vendor-specific
 custom extensions: local and portable. Local use means the custom
 data is only expected to be usable on the same machine, and the same
 application, which encoded it into the file. This limitation is due
 to the lack of a common registry for the local use number codes (the
 block or option type code numbers with the Most Significant Bit set).
 Since two different vendors may choose the same number, one vendor’s
 application reading the other vendor’s file would result in decoding
 failure. Therefore, vendors SHOULD instead use the portable method,
 as described next.

 The portable use-case supports vendor-specific custom extensions in
 pcapng files which can be shared across systems, organizations, etc.
 To avoid number space collisions, an IANA-registered Private
 Enterprise Number (PEN) is encoded into the Custom Block or Custom
 Option, using the PEN that belongs to the vendor defining the
 extension. Anyone can register a new PEN with IANA, for free, by
 filling out the online request form at http://pen.iana.org/pen/
 PenApplication.page (http://pen.iana.org/pen/PenApplication.page).

5.2. Controlling Copy Behavior

 Both Custom Blocks and Custom Options support two different codes to
 distinguish their "copy" behavior: a code for when the block or
 option can be safely copied into a new pcapng file by a pcapng
 manipulating application, and a code for when it should not be
 copied. A common reason for not copying a Custom Block or Custom
 Option is because it depends on other blocks or options in some way
 that would invalidate the custom data if the other blocks/options
 were removed or re-ordered. For example, if a Custom Block’s data
 includes an Interface ID number in its Custom Data portion, then it
 cannot be safely copied by a pcapng application that merges pcapng
 files, because the merging application might re-order or remove one
 or more of the Interface Description Blocks, and thereby change the
 Interface IDs that the Custom Block depends upon. The same issue
 arises if a Custom Block or Custom Option depends on the presence of,
 or specific ordering of, other standard-based or custom-defined

Tuexen, et al. Expires 30 January 2023 [Page 46]

Internet-Draft pcapng July 2022

 blocks or options.

 Note that the copy semantics is not related to privacy - there is no
 guarantee that a pcapng anonymizer will remove a Custom Block or
 Custom Option, even if the appropriate code is used requesting it not
 be copied; and the original pcapng file can be shared anyway. If the
 Custom Data portion of the Custom Block or Custom Option contains
 sensitive information, then it should be encrypted in some fashion.

5.3. Strings vs. Octets

 For the Custom Options, there are two Custom Data formats supported:
 a UTF-8 string and a binary data payload. The rationale for this
 separation is that a pcapng display application which does not
 understand the specific PEN’s Custom Option can still display the
 data as a string if it’s a string type code, rather than as hex-ascii
 of the octets.

5.4. Endianness Issues

 Implementers writing Custom Blocks or binary data Custom Options
 should be aware that a pcapng file can be re-written by machines
 using a different endianness than the original file, which means all
 known fields of the pcapng file will change endianness in the new
 file. Since the Custom Data payload of the Custom Block or the
 binary data Custom Option might be an arbitrary sequence of unknown
 octets to such machines, they cannot convert multi-octet values
 inside the Custom Data, or in the Options section of a Custom
 Block,into the appropriate endianness.

 For example, a little-endian machine can create a new pcapng file and
 add some binary data Custom Options to some non-Custom Block(s) in
 the file. This file can then be sent to a big-endian host, which
 will convert the Option Code, Option Length, and PEN fields of the
 options to big-endian format if it re-writes the file. However, if
 the software reading the file does not understand the contents of all
 of the Custom Options, it will leave the Custom Data payload of the
 options alone (as little-endian format). If this file then gets sent
 to a little-endian machine, then, when that little-endian machine
 reads the file, it will, if the software reading the file understands
 the contents of all the Custom Options, it will detect that the file
 format is big-endian, and swap the endianness while it parses the
 file - but that will cause the Custom Data payload to be incorrect
 since it was already in little-endian format.

 In addition, a little-endian machine can create a pcapng file and
 write some binary data Custom Blocks, containing options, to the
 file. The file can then be sent to a big-endian host, which, if the

Tuexen, et al. Expires 30 January 2023 [Page 47]

Internet-Draft pcapng July 2022

 software reading the file does not understand the contents of the
 Custom Blocks, will leave the Custom Data and Options alone (as
 little-endian format). If this file then gets sent to a little-
 endian machine, then, when that little-endian machine reads the file,
 it will, if the software reading the file understands the contents of
 all the Custom Blocks, it will detect that the file format is big-
 endian, and swap the endianness while it parses the file - but that
 will cause the Custom Data payload, the Option Code and Option Length
 values in the Options, and the PEN in any Custom Options to be
 incorrect since they were already in little-endian format.

 Therefore, the vendor should either encode the Custom Data of their
 Custom Blocks and Custom Options, the Option Code and Option Length
 fields of options in Custom Blocks, and the PEN field of Custom
 Options in Custom Blocks in a consistent manner, such as always in
 big-endian or always in little-endian format, regardless of the host
 platform’s endianness, or should encode some flag in the Custom Data
 payload to indicate in which endianness the rest of the payload is
 written.

 The PEN field of a Custom Block, or of a Custom Option not contained
 in a Custom Block, MUST be converted by code that reads pcapng files,
 so this is not an issue for that field, except for Custom Options in
 Custom Blocks. This is also not an issue for the Custom Data payload
 of UTF-8 string Custom Options.

6. Recommended File Name Extension: .pcapng

 The recommended file name extension for the "PCAP Next Generation
 Capture File Format" specified in this document is ".pcapng".

 On Windows and macOS, files are distinguished by an extension to
 their filename. Such an extension is technically not actually
 required, as applications should be able to automatically detect the
 pcapng file format through the "magic bytes" at the beginning of the
 file, as some other UN*X desktop environments do. However, using
 name extensions makes it easier to work with files (e.g. visually
 distinguish file formats) so it is recommended - though not required
 - to use .pcapng as the name extension for files following this
 specification.

 Please note: To avoid confusion (such as the current usage of .cap
 for a plethora of different capture file formats) file name
 extensions other than .pcapng should be avoided.

Tuexen, et al. Expires 30 January 2023 [Page 48]

Internet-Draft pcapng July 2022

7. Conclusions

 The file format proposed in this document should be very versatile
 and satisfy a wide range of applications. In the simplest case, it
 can contain a raw capture of the network data, made of a series of
 Simple Packet Blocks. In the most complex case, it can be used as a
 repository for heterogeneous information. In every case, the file
 remains easy to parse and an application can always skip the data it
 is not interested in; at the same time, different applications can
 share the file, and each of them can benefit of the information
 produced by the others. Two or more files can be concatenated
 obtaining another valid file.

8. Implementations

 Some known implementations that read or write the pcapng file format
 are listed on the pcapng GitHub wiki
 (https://github.com/pcapng/pcapng/wiki/Implementations).

9. Security Considerations

 TBD.

10. IANA Considerations

 TBD.

 [Open issue: decide whether the block types, option types, NRB Record
 types, etc. should be IANA registries. And if so, what the IANA
 policy for each should be (see RFC 5226)]

10.1. Standardized Block Type Codes

 Every Block is uniquely identified by a 32-bit integer value, stored
 in the Block Header.

 As pointed out in Section 3.1, Block Type codes whose Most
 Significant Bit (bit 31) is set to 1 are reserved for local use by
 the application.

 All the remaining Block Type codes (0x00000000 to 0x7FFFFFFF) are
 standardized by this document. Requests for new Block Type codes,
 Option Type codes, and Secrets Type codes should be made by creating
 a pull request to update this document at github.com/pcapng/pcapng
 (https://github.com/pcapng/pcapng). The pull request should add a
 description of the new block, option, or secret type to Section 4.
 The pull request description should contain a clear request for a new
 type code assignment.

Tuexen, et al. Expires 30 January 2023 [Page 49]

Internet-Draft pcapng July 2022

 The following is a list of the Standardized Block Type Codes:

 +=====================+===+
 |Block Type Code |Description |
 +=====================+===+
 |0x00000000 |Reserved ??? |
 +---------------------+---+
 |0x00000001 |Interface Description Block (Section 4.2) |
 +---------------------+---+
 |0x00000002 |Packet Block (Appendix A) |
 +---------------------+---+
 |0x00000003 |Simple Packet Block (Section 4.4) |
 +---------------------+---+
 |0x00000004 |Name Resolution Block (Section 4.5) |
 +---------------------+---+
 |0x00000005 |Interface Statistics Block (Section 4.6) |
 +---------------------+---+
 |0x00000006 |Enhanced Packet Block (Section 4.3) |
 +---------------------+---+
0x00000007	IRIG Timestamp Block (requested by Gianluca
	Varenni <gianluca.varenni@cacetech.com>, CACE
	Technologies LLC); code also used for Socket
	Aggregation Event Block
	(https://github.com/google/linux-
	sensor/blob/master/hone-pcapng.txt)
+---------------------+---+	
0x00000008	ARINC 429 (https://en.wikipedia.org/wiki/
	ARINC_429) in AFDX Encapsulation Information
	Block (requested by Gianluca Varenni
	<gianluca.varenni@cacetech.com>, CACE
	Technologies LLC)
+---------------------+---+	
0x00000009	[systemd Journal Export
	Block][I-D.richardson-opsawg-pcapng-extras]
+---------------------+---+	
0x0000000A	Decryption Secrets Block (Section 4.7)
+---------------------+---+	
0x00000101	Hone Project (https://github.com/HoneProject)
	Machine Info Block
	(https://github.com/HoneProject/Linux-
	Sensor/wiki/Augmented-PCAP-Next-Generation-
	Dump-File-Format) (see also Google version
	(https://github.com/google/linux-
	sensor/blob/master/hone-pcapng.txt))
+---------------------+---+	
0x00000102	Hone Project (https://github.com/HoneProject)
	Connection Event Block
	(https://github.com/HoneProject/Linux-

Tuexen, et al. Expires 30 January 2023 [Page 50]

Internet-Draft pcapng July 2022

	Sensor/wiki/Augmented-PCAP-Next-Generation-
	Dump-File-Format) (see also Google version
	(https://github.com/google/linux-
	sensor/blob/master/hone-pcapng.txt))
+---------------------+---+	
0x00000201	Sysdig (https://github.com/draios/sysdig)
	Machine Info Block
+---------------------+---+	
0x00000202	Sysdig (https://github.com/draios/sysdig)
	Process Info Block, version 1
+---------------------+---+	
0x00000203	Sysdig (https://github.com/draios/sysdig) FD
	List Block
+---------------------+---+	
0x00000204	Sysdig (https://github.com/draios/sysdig)
	Event Block
+---------------------+---+	
0x00000205	Sysdig (https://github.com/draios/sysdig)
	Interface List Block
+---------------------+---+	
0x00000206	Sysdig (https://github.com/draios/sysdig)
	User List Block
+---------------------+---+	
0x00000207	Sysdig (https://github.com/draios/sysdig)
	Process Info Block, version 2
+---------------------+---+	
0x00000208	Sysdig (https://github.com/draios/sysdig)
	Event Block with flags
+---------------------+---+	
0x00000209	Sysdig (https://github.com/draios/sysdig)
	Process Info Block, version 3
+---------------------+---+	
0x00000210	Sysdig (https://github.com/draios/sysdig)
	Process Info Block, version 4
+---------------------+---+	
0x00000211	Sysdig (https://github.com/draios/sysdig)
	Process Info Block, version 5
+---------------------+---+	
0x00000212	Sysdig (https://github.com/draios/sysdig)
	Process Info Block, version 6
+---------------------+---+	
0x00000213	Sysdig (https://github.com/draios/sysdig)
	Process Info Block, version 7
+---------------------+---+	
0x00000BAD	Custom Block that rewriters can copy into new
	files (Section 4.8)
+---------------------+---+	
0x40000BAD	Custom Block that rewriters should not copy

Tuexen, et al. Expires 30 January 2023 [Page 51]

Internet-Draft pcapng July 2022

 | |into new files (Section 4.8) |
 +---------------------+---+
 |0x0A0D0D0A |Section Header Block (Section 4.1) |
 +---------------------+---+
0x0A0D0A00-0x0A0D0AFF	Reserved. Used to detect trace files
	corrupted because of file transfers using the
	HTTP protocol in text mode.
+---------------------+---+	
0x000A0D0A-0xFF0A0D0A	Reserved. Used to detect trace files
	corrupted because of file transfers using the
	HTTP protocol in text mode.
+---------------------+---+	
0x000A0D0D-0xFF0A0D0D	Reserved. Used to detect trace files
	corrupted because of file transfers using the
	HTTP protocol in text mode.
+---------------------+---+	
0x0D0D0A00-0x0D0D0AFF	Reserved. Used to detect trace files
	corrupted because of file transfers using the
	FTP protocol in text mode.
+---------------------+---+	
0x80000000-0xFFFFFFFF	Reserved for local use.
 +---------------------+---+

 Table 9: Standardized Block Type Codes

 [Open issue: reserve 0x40000000-0x7FFFFFFF for do-not-copy-bit range
 of base types?]

11. Contributors

 Loris Degioanni and Gianluca Varenni were coauthoring this document
 before it was submitted to the IETF.

12. Acknowledgments

 The authors wish to thank Anders Broman, Ulf Lamping, Richard Sharpe
 and many others for their invaluable comments.

13. References

13.1. Normative References

 [I-D.richardson-opsawg-pcaplinktype]
 Harris, G. and M. C. Richardson, "PCAP Capture File
 Format", Work in Progress, Internet-Draft, draft-
 richardson-opsawg-pcaplinktype-00, 29 July 2022,
 <https://datatracker.ietf.org/doc/html/draft-richardson-
 opsawg-pcaplinktype-00>.

Tuexen, et al. Expires 30 January 2023 [Page 52]

Internet-Draft pcapng July 2022

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

13.2. Informative References

 [I-D.richardson-opsawg-pcapng-extras]
 Tuexen, M., Risso, F., Bongertz, J., Combs, G., Harris,
 G., Chaudron, E., and M. C. Richardson, "Additional block
 types for PCAP Next Generation (pcapng) Capture File
 Format", Work in Progress, Internet-Draft, draft-
 richardson-opsawg-pcapng-extras-00, 4 October 2021,
 <https://datatracker.ietf.org/doc/html/draft-richardson-
 opsawg-pcapng-extras-00>.

Appendix A. Packet Block (obsolete!)

 The Packet Block is obsolete, and MUST NOT be used in new files. Use
 the Enhanced Packet Block or Simple Packet Block instead. This
 section is for historical reference only.

 A Packet Block was a container for storing packets coming from the
 network.

Tuexen, et al. Expires 30 January 2023 [Page 53]

Internet-Draft pcapng July 2022

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 0 | Block Type = 0x00000002 |
 +-+
 4 | Block Total Length |
 +-+
 8 | Interface ID | Drops Count |
 +-+
 12 | Timestamp (High) |
 +-+
 16 | Timestamp (Low) |
 +-+
 20 | Captured Packet Length |
 +-+
 24 | Original Packet Length |
 +-+
 28 / /
 / Packet Data /
 / variable length, padded to 32 bits /
 / /
 +-+
 / /
 / Options (variable) /
 / /
 +-+
 | Block Total Length |
 +-+

 Figure 19: Packet Block Format

 The Packet Block has the following fields:

 * Block Type: The block type of the Packet Block is 2.

 * Block Total Length: total size of this block, as described in
 Section 3.1.

 * Interface ID: specifies the interface this packet comes from; the
 correct interface will be the one whose Interface Description
 Block (within the current Section of the file) is identified by
 the same number (see Section 4.2) of this field. The interface ID
 MUST be valid, which means that an matching interface description
 block MUST exist.

Tuexen, et al. Expires 30 January 2023 [Page 54]

Internet-Draft pcapng July 2022

 * Drops Count: a local drop counter. It specifies the number of
 packets lost (by the interface and the operating system) between
 this packet and the preceding one. The value xFFFF (in
 hexadecimal) is reserved for those systems in which this
 information is not available.

 * Timestamp (High) and Timestamp (Low): timestamp of the packet.
 The format of the timestamp is the same as was already defined for
 the Enhanced Packet Block (Section 4.3).

 * Captured Packet Length: number of octets captured from the packet
 (i.e. the length of the Packet Data field). It will be the
 minimum value among the Original Packet Length and the snapshot
 length for the interface (SnapLen, defined in Figure 10). The
 value of this field does not include the padding octets added at
 the end of the Packet Data field to align the Packet Data field to
 a 32-bit boundary.

 * Original Packet Length: actual length of the packet when it was
 transmitted on the network. It can be different from Captured
 Packet Length if the packet has been truncated by the capture
 process.

 * Packet Data: the data coming from the network, including link-
 layer headers. The actual length of this field is Captured Packet
 Length plus the padding to a 32-bit boundary. The format of the
 link-layer headers depends on the LinkType field specified in the
 Interface Description Block (see Section 4.2) and it is specified
 in the entry for that format in
 [I-D.richardson-opsawg-pcaplinktype].

 * Options: optionally, a list of options (formatted according to the
 rules defined in Section 3.5) can be present.

 In addition to the options defined in Section 3.5, the following
 options were valid within this block:

 +============+======+==========+===================+
 | Name | Code | Length | Multiple allowed? |
 +============+======+==========+===================+
 | pack_flags | 2 | 4 | no |
 +------------+------+----------+-------------------+
 | pack_hash | 3 | variable | yes |
 +------------+------+----------+-------------------+

 Table 10: Packet Block Options

 pack_flags:

Tuexen, et al. Expires 30 January 2023 [Page 55]

Internet-Draft pcapng July 2022

 The pack_flags option is the same as the epb_flags of the
 enhanced packet block.

 Example: ’0’.

 pack_hash:
 The pack_hash option is the same as the epb_hash of the
 enhanced packet block.

 Examples: ’02 EC 1D 87 97’, ’03 45 6E C2 17 7C 10 1E 3C 2E 99 6E C2
 9A 3D 50 8E’.

Authors’ Addresses

 Michael Tuexen (editor)
 Muenster University of Applied Sciences
 Stegerwaldstrasse 39
 48565 Steinfurt
 Germany
 Email: tuexen@fh-muenster.de

 Fulvio Risso
 Politecnico di Torino
 Corso Duca degli Abruzzi, 24
 10129 Torino
 Italy
 Email: fulvio.risso@polito.it

 Jasper Bongertz
 Airbus Defence and Space CyberSecurity
 Kanzlei 63c
 40667 Meerbusch
 Germany
 Email: jasper@packet-foo.com

 Gerald Combs
 Wireshark Foundation
 339 Madson Pl
 Davis, CA 95618
 United States of America
 Email: gerald@wireshark.org

 Guy Harris
 Email: gharris@sonic.net

Tuexen, et al. Expires 30 January 2023 [Page 56]

Internet-Draft pcapng July 2022

 Eelco Chaudron
 Red Hat
 De Entree 238
 1101 EE Amsterdam
 Netherlands
 Email: eelco@redhat.com

 Michael C. Richardson
 Sandelman Software Works
 Email: mcr+ietf@sandelman.ca
 URI: http://www.sandelman.ca/

Tuexen, et al. Expires 30 January 2023 [Page 57]

