
taps M. Duke

Internet-Draft F5 Networks, Inc.

Intended status: Informational 25 October 2021

Expires: 28 April 2022

 TAPS Transport Discovery

 draft-duke-taps-transport-discovery-02

Abstract

 The Transport Services architecture decouples applications from the

 protocol implementations that transport their data. While it is

 often straightforward to connect applications with transports that

 are present in the host operating system, providing a means of

 discovering user-installed implementations dramatically enlarges the

 use cases. This document discusses considerations for the design of

 a discovery mechanism and an example of such a design.

 Discussion of this work is encouraged to happen on the TAPS IETF

 mailing list taps@ietf.org or on the GitHub repository which contains

 the draft: https://github.com/martinduke/draft-duke-taps-transport-

 discovery.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Discussion of this document takes place on the mailing list

 (taps@ietf.org), which is archived at

 https://mailarchive.ietf.org/arch/browse/taps/.

 Source for this draft and an issue tracker can be found at

 https://github.com/martinduke/draft-duke-taps-transport-discovery.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

Duke Expires 28 April 2022 [Page 1]

Internet-Draft transport-discovery October 2021

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 28 April 2022.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Simplified BSD License text

 as described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3

 2. Conventions . 4

 3. Entities . 4

 4. Protocol Implementation 5

 4.1. Functions . 5

 4.2. Events . 5

 5. Protocol Installer . 6

 6. TAPS . 6

 7. Security Considerations 7

 8. IANA Considerations . 8

 9. Implementation Status . 8

 10. Informative References 8

 Appendix A. Acknowledgments 8

 Appendix B. Change Log . 9

 B.1. since draft-duke-taps-transport-discovery-01 9

 Author’s Address . 9

Duke Expires 28 April 2022 [Page 2]

Internet-Draft transport-discovery October 2021

1. Introduction

 The Transport Services architecture [I-D.ietf-taps-arch] enables

 applications to be protocol-agnostic by presenting an interface where

 applications can specify their required properties, and the service

 will select whichever protocol implementation available in the system

 best meets those requirements. This increases application

 portability and eases the introduction of new transport innovations

 by not requiring changes to applications.

 It is sometimes straightforward for a Transport Services interface to

 identify the transports available in the host operating system.

 However, including transports installed by the user greatly expands

 use cases for the architecture. This document presents

 considerations for the secure design of a system for discovery of new

 protocol implementations.

 Protocol Discovery would ideally have several desirable properties.

 * The transport services API should not have to recompile when

 installing new implementations. This would not only disrupt

 ongoing connections, but also involve ordinary users in the

 complex business of downloading and building source code.

 * It should support user-space implementations. Most protocol

 innovation begins with user space implementations, and many

 transports (e.g. TLS, HTTP, QUIC) are usually implemented outside

 the kernel long after reaching maturity.

 * Protocol Discovery should not subject ordinary users to security

 vulnerabilities. A new protocol installation is an opportunity to

 hijack a user’s networking stack, and Protocol Discovery requires

 strong protections against arbitrary code performing operations

 other than advertised on application data.

 * Conversely, sophisticated users need a means of discovering

 implementations that are too new to have fully developed internet

 trust mechanisms. This is the only means of initially deploying

 new protocols for existing apps, and is the most plausible model

 to deploy transport services API shims for existing protocol

 libraries (e.g., the common TLS implementations) before their

 proponents deploy native support.

 * Applications should not have to bring their own implementations.

 The Transport Services API has the concept of "framers" (see Sec.

 7.1 of [I-D.ietf-taps-interface]) that provide some ability for

 applications to provide additional protocol encapsulation around

 their messages. However, one important advantage of Transport

Duke Expires 28 April 2022 [Page 3]

Internet-Draft transport-discovery October 2021

 Services is that applications do not have to rely on a third-party

 implementation that might not offer long term support, or add to

 their footprint where a functionally equivalent protocol

 implementation is already present on the system.

 This document attempts to resolve the tension between some of these

 properties.

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in RFC 2119 [RFC2119].

 "TAPS" is an abbreviation for the transport services API.

 For brevity, this document will use "app" as a shorthand for

 "application."

 As in other TAPS documents, the concept of a "transport protocol" is

 expanded beyond the traditional "transport layer" to include other

 protocols that encapsulate application data, such as TLS, HTTP, and

 Websockets.

3. Entities

 The Transport Services API (TAPS) is responsible for matching

 protocol capabilities with application requirements, and mediating

 further app communication with the selected protocol implementation.

 In this document, it actively discovers what implementations are

 available in the system.

 The protocol implementation instantiates the transport. In this

 document, it offers a dynamically linked library that conforms to

 standard interfaces so that TAPS can interchangeability interact with

 it. In practice, this may be a shim layer if the underlying

 implementation does not support TAPS.

 The protocol installer, aside from installing the implementation

 library and/or a TAPS shim layer, also is responsible for notifying

 TAPS that the implementation is present, and what its capabilities

 are.

 Finally, the application leverages TAPS to initiate, manage, and

 terminate communications with other endpoints. This document does

 not require any changes to application behavior beyond those in the

 core TAPS design.

Duke Expires 28 April 2022 [Page 4]

Internet-Draft transport-discovery October 2021

 More detailed requirements for each of these entities is below.

4. Protocol Implementation

 The protocol implementation must offer a dynamically linked library

 that offers certain APIs. TAPS SHOULD, in its documentation, provide

 a template for the format of these functions.

4.1. Functions

 The objects below need not follow the semantics of the TAPS

 application API. In particular, a "message" is unlikely to have all

 the property information described there, instead being a more

 primitive buffer in which raw data is stored.

 ’’’ Listener := Listen(localEndpoint) ’’’

 Listen opens a socket and listens on the specified address, and

 returns a handle to the resulting listener.

 ’’’ Listener.Stop() ’’’

 Stop causes the listener to stop accepting connections. Subsequent

 events will return handles to the resulting connection.

 ’’’ Connection.Send(Message) Connection.Receive(Message) ’’’

 TAPS will provide a Message object for the protocol to either send,

 or use to store incoming data.

 Further APIs are TBD.

4.2. Events

 The protocol needs to throw all the events described in the TAPS

 Application API, although the return values may not exactly conform

 to the same semantics.

 TAPS SHOULD provide an event framework that frees the protocol

 implementation from running its own thread for a polling loop. TAPS

 also SHOULD account for the possibility that the implementation may

 have its own polling architecture. If true, the protocol MUST

 conform to the API by translating its events into the signals or

 callbacks that TAPS expects.

Duke Expires 28 April 2022 [Page 5]

Internet-Draft transport-discovery October 2021

5. Protocol Installer

 The installer might use the operating system’s package manager or

 "app store", or be a simple script. Besides installing the

 implementation, the installer also writes data to a registry that

 TAPS will access to discover the implementation.

 This data will include:

 * the name of the supported protocol(s);

 * optionally, the versions of those protocols;

 * the path to the implementations TAPS-compliant library;

 * the properties that the protocol implementation supports, as

 described in Section 4.2 of [I-D.ietf-taps-interface]; and

 * information to authenticate the entry (see Section 7).

 Of course, a de-installer should remove the appropriate registry

 entry.

 A TAPS implementation SHOULD provide a template for this registry

 information.

 One potential instantiation of this would have protocol installers

 write a file to a directory that, in a specified markup language,

 described the information above.

6. TAPS

 TAPS creates a registry for protocol implementations, which might be

 a database or a directory. To prevent inadvertent security

 vulnerabilities, the host system SHOULD, at minimum, require

 administrative privileges to write to the registry.

 No later than upon receipt of request for a Preconnection, TAPS MUST

 access the registry to determine the available protocols and their

 properties. It is perfectly valid for there to be multiple

 implementations of a protocol.

 TAPS SHOULD validate entries in the registry using the provided

 authentication data.

 One potential instaniation would start daemon that monitored the

 status of the registry. Upon any change to the registry, the daemon

 might:

Duke Expires 28 April 2022 [Page 6]

Internet-Draft transport-discovery October 2021

 * authenticate any new entry in accordance with security policy;

 * verify that the required function handles are present;

 * run tests to verify the installation’s claimed properties;

 * inform the user of the new protocol, requesting permission to

 trust it; and

 * write the information into shared memory for the use of

 Preconnections.

7. Security Considerations

 User-space installation of protocols provides enormous opportunities

 for attackers to hijack a network stack. While this has always been

 possible with arbitrary protocol implementations, with TAPS

 applications completely unaware of the installation can be victims of

 such an attack.

 An implementation might advertise properties it does not actually

 provide to attract more traffic. For example, a "TLS" implementation

 might not encrypt anything at all. A TAPS implementation MAY run

 tests on newly installed protocols to verify it provides the

 advertised properties.

 Moreover, in principle an implementation could deliver application

 data anywhere it wanted with little visibility to the application,

 much less the user.

 The origin of the protocol installer is important to the trust model.

 Obviously, transports in the kernel do not introduce vulnerabilities

 specific to TAPS. A trusted package manager (e.g. the Apple App

 Store or yum) may imply a minimal level of veracity of the available

 packages. Protocol implementations directly downloaded from the

 internet without mediation through these mechanisms require the

 greatest care.

 Ongoing work on this document will largely focus on building

 mechanisms to mitigate this weakness. Some promising approaches

 include:

 * administrative privileges to alter the TAPS registry;

 * a special certificate authority that provides an authentication of

 the implementation’s explicit and implicit claims, as well as the

 integrity of the installed binary;

Duke Expires 28 April 2022 [Page 7]

Internet-Draft transport-discovery October 2021

 * each installer generates a private key and provides the

 corresponding public key, so that only possessors of the private

 key can modify or delete the registry entry;

 * confirmation by a human, prominently warned of potential

 consequences, if the installation is not mediated through a

 trusted authority.

8. IANA Considerations

 This document has no IANA requirements.

9. Implementation Status

 RFC Editor’s Note: Please remove this section prior to

 publication of a final version of this document.

 The Dynamic TAPS project (https://github.com/f5networks/dynamic-taps)

 is a preliminary effort to implement the concepts in this document.

10. Informative References

 [I-D.ietf-taps-arch]

 Pauly, T., Trammell, B., Brunstrom, A., Fairhurst, G.,

 Perkins, C., Tiesel, P. S., and C. A. Wood, "An

 Architecture for Transport Services", Work in Progress,

 Internet-Draft, draft-ietf-taps-arch-11, 12 July 2021,

 <https://datatracker.ietf.org/doc/html/draft-ietf-taps-

 arch-11>.

 [I-D.ietf-taps-interface]

 Trammell, B., Welzl, M., Enghardt, T., Fairhurst, G.,

 Kuehlewind, M., Perkins, C., Tiesel, P. S., Wood, C. A.,

 Pauly, T., and K. Rose, "An Abstract Application Layer

 Interface to Transport Services", Work in Progress,

 Internet-Draft, draft-ietf-taps-interface-13, 12 July

 2021, <https://datatracker.ietf.org/doc/html/draft-ietf-

 taps-interface-13>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://doi.org/10.17487/RFC2119>.

Appendix A. Acknowledgments

 Tim Worsley contributed important ideas to this document.

Duke Expires 28 April 2022 [Page 8]

Internet-Draft transport-discovery October 2021

Appendix B. Change Log

 RFC Editor’s Note: Please remove this section prior to

 publication of a final version of this document.

B.1. since draft-duke-taps-transport-discovery-01

 * Added output of initial implementation work

Author’s Address

 Martin Duke

 F5 Networks, Inc.

 Email: martin.h.duke@gmail.com

Duke Expires 28 April 2022 [Page 9]

