
TLS Working Group T. Wiggers
Internet-Draft PQShield
Intended status: Informational S. Celi
Expires: 17 October 2024 Brave Software
 P. Schwabe
 Radboud University and MPI-SP
 D. Stebila
 University of Waterloo
 N. Sullivan
 15 April 2024

 KEM-based Authentication for TLS 1.3
 draft-celi-wiggers-tls-authkem-03

Abstract

 This document gives a construction for a Key Encapsulation Mechanism
 (KEM)-based authentication mechanism in TLS 1.3. This proposal
 authenticates peers via a key exchange protocol, using their long-
 term (KEM) public keys.

About This Document

 This note is to be removed before publishing as an RFC.

 Status information for this document may be found at
 https://datatracker.ietf.org/doc/draft-celi-wiggers-tls-authkem/.

 Discussion of this document takes place on the tlswg Working Group
 mailing list (mailto:tls@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/browse/tls/. Subscribe at
 https://www.ietf.org/mailman/listinfo/tls/.

 Source for this draft and an issue tracker can be found at
 https://github.com/kemtls/draft-celi-wiggers-tls-authkem.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Wiggers, et al. Expires 17 October 2024 [Page 1]

Internet-Draft AuthKEM April 2024

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 17 October 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Revision history . 4
 1.1.1. Revision 2 . 4
 1.2. Using key exchange instead of signatures for
 authentication . 4
 1.3. Evaluation of handshake sizes 5
 1.4. Related work . 7
 1.4.1. OPTLS . 7
 1.4.2. Compressing certificates and certificate chains . . . 7
 1.5. Organization . 8
 2. Conventions and definitions 8
 2.1. Terminology . 8
 2.2. Key Encapsulation Mechanisms 9
 3. Full 1.5-RTT AuthKEM Handshake Protocol 10
 3.1. Client authentication 11
 3.2. Relevant handshake messages 13
 3.3. Overview of key differences with RFC8446 TLS 1.3 13
 3.4. Implicit and explicit authentication 13
 3.5. Authenticating CertificateRequest 14
 4. Implementation . 14
 4.1. Negotiation of AuthKEM 14
 4.2. Protocol messages . 15
 4.3. Cryptographic computations 16
 4.3.1. Key schedule for full AuthKEM handshakes 16
 4.3.2. Computations of KEM shared secrets 18

Wiggers, et al. Expires 17 October 2024 [Page 2]

Internet-Draft AuthKEM April 2024

 4.3.3. Explicit Authentication Messages 18
 5. Security Considerations 19
 5.1. Implicit authentication 19
 5.2. Authentication of Certificate Request 20
 5.3. Other security considerations 21
 6. References . 21
 6.1. Normative References 21
 6.2. Informative References 22
 Appendix A. Open points of discussion 25
 A.1. Authentication concerns for client authentication
 requests. 25
 A.2. Interaction with signing certificates 25
 Acknowledgements . 25
 Authors’ Addresses . 25

1. Introduction

 Note: This is a work-in-progress draft. We welcome discussion,
 feedback and contributions through the IETF TLS working group mailing
 list or directly on GitHub. Any code points indicated by this draft
 are for experiments only, and should not be expected to be stable.

 This document gives a construction for KEM-based authentication in
 TLS 1.3 [RFC8446]. Authentication happens via asymmetric
 cryptography by the usage of KEMs advertised as the long-term KEM
 public keys in the Certificate.

 TLS 1.3 is in essence a signed key exchange protocol (if using
 certificate-based authentication). Authentication in TLS 1.3 is
 achieved by signing the handshake transcript with digital signatures
 algorithms. KEM-based authentication provides authentication by
 deriving a shared secret that is encapsulated against the public key
 contained in the Certificate. Only the holder of the private key
 corresponding to the certificate’s public key can derive the same
 shared secret and thus decrypt its peer’s messages.

 This approach is appropriate for endpoints that have KEM public keys.
 Though this is currently rare, certificates can be issued with (EC)DH
 public keys as specified for instance in [RFC8410], or using a
 delegation mechanism, such as delegated credentials
 [I-D.ietf-tls-subcerts].

Wiggers, et al. Expires 17 October 2024 [Page 3]

Internet-Draft AuthKEM April 2024

 In this proposal, we build on [RFC9180]. This standard currently
 only covers Diffie-Hellman based KEMs, but the first post-quantum
 algorithms have already been put forward
 [I-D.draft-westerbaan-cfrg-hpke-xyber768d00]. This proposal uses
 Kyber [KYBER] [I-D.draft-cfrg-schwabe-kyber], the first selected
 algorithm for key exchange in the NIST post-quantum standardization
 project [NISTPQC].

1.1. Revision history

 *This section should be removed prior to publication of a final
 version of this document.*

 * Revision draft-celi-wiggers-tls-authkem-03

 - Assigned experimental code points

 - Re-worked HPKE computation

 * Revision draft-celi-wiggers-tls-authkem-02

 - Split PSK mechanism off into
 [I-D.draft-wiggers-tls-authkem-psk]

 - Editing

 * Revision draft-celi-wiggers-tls-authkem-01

 - Significant Editing

 - Use HPKE context

 * Revision draft-celi-wiggers-tls-authkem-00

 - Initial version

1.1.1. Revision 2

1.2. Using key exchange instead of signatures for authentication

 The elliptic-curve and finite-field-based key exchange and signature
 algorithms that are currently widely used are very similar in sizes
 for public keys, ciphertexts and signatures. As an example, RSA
 signatures are famously "just" RSA encryption backwards.

Wiggers, et al. Expires 17 October 2024 [Page 4]

Internet-Draft AuthKEM April 2024

 This changes in the post-quantum setting. Post-quantum key exchange
 and signature algorithms have significant differences in
 implementation, performance characteristics, and key and signature
 sizes.

 This also leads to increases in code size: For example, implementing
 highly efficient polynomial multiplication for post-quantum KEM Kyber
 and signature scheme Dilithium [DILITHIUM] requires significantly
 different approaches, even though the algorithms are related [K22].

 Using the protocol proposed in this draft allows to reduce the amount
 of data exchanged for handshake authentication. It also allows to
 re-use the implementation that is used for ephemeral key exchange for
 authentication, as KEM operations replace signing. This decreases
 the code size requirements, which is especially relevant to protected
 implementations. Finally, KEM operations may be more efficient than
 signing, which might especially affect embedded platforms.

1.3. Evaluation of handshake sizes

 Should probably be removed before publishing

 In the following table, we compare the sizes of TLS 1.3- and AuthKEM-
 based handshakes. We give the transmission requirements for
 handshake authentication (public key + signature), and certificate
 chain (intermediate CA certificate public key and signature + root CA
 signature). For clarity, we are not listing post-quantum/traditional
 hybrid algorithms; we also omit mechanisms such as Certificate
 Transparency [RFC6962] or OCSP stapling [RFC6960]. We use Kyber-768
 instead of the smaller Kyber-512 parameter set, as the former is
 currently used in experimental deployments. For signatures, we use
 Dilithium, the "primary" algorithm selected by NIST for post-quantum
 signatures, as well as Falcon [FALCON], the algorithm that offers
 smaller public key and signature sizes, but which NIST indicates can
 be used if the implementation requirements can be met.

Wiggers, et al. Expires 17 October 2024 [Page 5]

Internet-Draft AuthKEM April 2024

 +===========+===================+=========+===============+======+
 | Handshake | HS auth algorithm | HS Auth | Certificate | Sum |
 | | | bytes | chain bytes | |
 +===========+===================+=========+===============+======+
 | TLS 1.3 | RSA-2048 | 528 | 784 (RSA- | 1312 |
 | | | | 2048) | |
 +-----------+-------------------+---------+---------------+------+
 | TLS 1.3 | Dilithium-2 | 3732 | 6152 | 9884 |
 | | | | (Dilithium-2) | |
 +-----------+-------------------+---------+---------------+------+
 | TLS 1.3 | Falcon-512 | 1563 | 2229 (Falcon- | 3792 |
 | | | | 512) | |
 +-----------+-------------------+---------+---------------+------+
 | TLS 1.3 | Dilithium-2 | 3732 | 2229 (Falcon- | 5961 |
 | | | | 512) | |
 +-----------+-------------------+---------+---------------+------+
 | AuthKEM | Kyber-768 | 2272 | 6152 | 8424 |
 | | | | (Dilithium-2) | |
 +-----------+-------------------+---------+---------------+------+
 | AuthKEM | Kyber-768 | 2272 | 2229 (Falcon- | 4564 |
 | | | | 512) | |
 +-----------+-------------------+---------+---------------+------+

 Table 1: Size comparison of public-key cryptography in TLS 1.3
 and AuthKEM handshakes.

 Note that although TLS 1.3 with Falcon-512 is the smallest
 instantiation, Falcon is very challenging to implement: signature
 generation requires (emulation of) 64-bit floating point operations
 in constant time. It is also very difficult to protect against other
 side-channel attacks, as there are no known methods of masking
 Falcon. In light of these difficulties, use of Falcon-512 in online
 handshake signatures may not be wise.

 Using AuthKEM with Falcon-512 in the certificate chain remains an
 attractive option, however: the certificate issuance process, because
 it is mostly offline, could perhaps be set up in a way to protect the
 Falcon implementation against attacks. Falcon signature verification
 is fast and does not require floating-point arithmetic. Avoiding
 online usage of Falcon in TLS 1.3 requires two implementations of the
 signature verification routines, i.e., Dilithium and Falcon, on top
 of the key exchange algorithm.

Wiggers, et al. Expires 17 October 2024 [Page 6]

Internet-Draft AuthKEM April 2024

 In all examples, the size of the certificate chain still dominates
 the TLS handshake, especially if Certificate Transparency SCT
 statements are included, which is relevant in the context of the
 WebPKI. However, we believe that if proposals to reduce transmission
 sizes of the certificate chain in the WebPKI context are implemented,
 the space savings of AuthKEM naturally become relatively larger and
 more significant. We discuss this in Section 1.4.2.

1.4. Related work

1.4.1. OPTLS

 This proposal draws inspiration from [I-D.ietf-tls-semistatic-dh],
 which is in turn based on the OPTLS proposal for TLS 1.3 [KW16].
 However, these proposals require a non-interactive key exchange: they
 combine the client’s public key with the server’s long-term key.
 This imposes an extra requirement: the ephemeral and static keys MUST
 use the same algorithm, which this proposal does not require.
 Additionally, there are no post-quantum proposals for a non-
 interactive key exchange currently considered for standardization,
 while several KEMs are on the way.

1.4.2. Compressing certificates and certificate chains

 AuthKEM reduces the amount of data required for authentication in
 TLS. In recognition of the large increase in handshake size that a
 naive adoption of post-quantum signatures would affect, several
 proposals have been put forward that aim to reduce the size of
 certificates in the TLS handshake. [RFC8879] proposes a certificate
 compression mechanism based on compression algorithms, but this is
 not very helpful to reduce the size of high-entropy public keys and
 signatures. Proposals that offer more significant reductions of
 sizes of certificate chains, such as
 [I-D.draft-jackson-tls-cert-abridge], [I-D.ietf-tls-ctls],
 [I-D.draft-kampanakis-tls-scas-latest], and
 [I-D.draft-davidben-tls-merkle-tree-certs] all mainly rely on some
 form of out-of-band distribution of intermediate certificates or
 other trust anchors in a way that requires a robust update mechanism.
 This makes these proposals mainly suitable for the WebPKI setting;
 although this is also the setting that has the largest number of
 certificates due to the inclusion of SCT statements [RFC6962] and
 OSCP staples [RFC6960].

Wiggers, et al. Expires 17 October 2024 [Page 7]

Internet-Draft AuthKEM April 2024

 AuthKEM complements these approaches in the WebPKI setting. On its
 own the gains that AuthKEM offers may be modest compared to the large
 sizes of certificate chains. But when combined with compression or
 certificate suppression mechanisms such as those proposed in the
 referenced drafts, the reduction in handshake size when replacing
 Dilithium-2 by Kyber-768 becomes significant again.

1.5. Organization

 After a brief introduction to KEMs, we will introduce the AuthKEM
 authentication mechanism. For clarity, we discuss unilateral and
 mutual authentication separately. In the remainder of the draft, we
 will discuss the necessary implementation mechanics, such as code
 points, extensions, new protocol messages and the new key schedule.
 The draft concludes with ah extensive discussion of relevant security
 considerations.

 A related mechanism for KEM-based PSK-style handshakes is discussed
 in [I-D.draft-wiggers-tls-authkem-psk].

2. Conventions and definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2.1. Terminology

 The following terms are used as they are in [RFC8446]

 client: The endpoint initiating the TLS connection.

 connection: A transport-layer connection between two endpoints.

 endpoint: Either the client or server of the connection.

 handshake: An initial negotiation between client and server that
 establishes the parameters of their subsequent interactions within
 TLS.

 peer: An endpoint. When discussing a particular endpoint, "peer"
 refers to the endpoint that is not the primary subject of
 discussion.

 receiver: An endpoint that is receiving records.

Wiggers, et al. Expires 17 October 2024 [Page 8]

Internet-Draft AuthKEM April 2024

 sender: An endpoint that is transmitting records.

 server: The endpoint that responded to the initiation of the TLS
 connection. i.e. the peer of the client.

2.2. Key Encapsulation Mechanisms

 As this proposal relies heavily on KEMs, which are not originally
 used by TLS, we will provide a brief overview of this primitive.
 Other cryptographic operations will be discussed later.

 A Key Encapsulation Mechanism (KEM) is a cryptographic primitive that
 defines the methods Encapsulate and Decapsulate. In this draft, we
 extend these operations with context separation strings, per HPKE
 [RFC9180]:

 Encapsulate(pkR, context_string):
 Takes a public key, and produces a shared secret and
 encapsulation.

 Decapsulate(enc, skR, context_string):
 Takes the encapsulation and the private key. Returns the shared
 secret.

 We implement these methods through the KEMs defined in [RFC9180] to
 export shared secrets appropriate for using with the HKDF in TLS 1.3:

 def Encapsulate(pk, context_string):
 enc, ctx = HPKE.SetupBaseS(pk, "tls13 auth-kem")
 ss = ctx.Export(context_string, HKDF.Length)
 return (enc, ss)

 def Decapsulate(enc, sk, context_string):
 return HPKE.SetupBaseR(enc, sk, "tls13 auth-kem")
 .Export(context_string, HKDF.Length)

 Keys are generated and encoded for transmission following the
 conventions in [RFC9180]. The values of context_string are defined
 in Section 4.3.2.

 Open question: Should we keep using HPKE, or just use "plain" KEMs,
 as in the original KEMTLS works? Please see the discussion at Issue
 #32 (https://github.com/kemtls/draft-celi-wiggers-tls-authkem/
 issues/32).

Wiggers, et al. Expires 17 October 2024 [Page 9]

Internet-Draft AuthKEM April 2024

3. Full 1.5-RTT AuthKEM Handshake Protocol

 Figure 1 below shows the basic KEM-authentication (AuthKEM)
 handshake, without client authentication:

 Client Server

 Key ^ ClientHello
 Exch | + key_share
 v + signature_algorithms
 -------->
 ServerHello ^ Key
 + key_share v Exch
 <EncryptedExtensions>
 <Certificate> ^
 <KEMEncapsulation> --------> |
 {Finished} --------> | Auth
 [Application Data] --------> |
 <-------- {Finished} v

 [Application Data] <-------> [Application Data]

 + Indicates noteworthy extensions sent in the
 previously noted message.
 <> Indicates messages protected using keys
 derived from a [sender]_handshake_traffic_secret.
 {} Indicates messages protected using keys
 derived from a
 [sender]_authenticated_handshake_traffic_secret.
 [] Indicates messages protected using keys
 derived from [sender]_application_traffic_secret_N.

 Figure 1: Message Flow for KEM-Authentication (KEM-Auth)
 Handshake without client authentication.

 This basic handshake captures the core of AuthKEM. Instead of using
 a signature to authenticate the handshake, the client encapsulates a
 shared secret to the server’s certificate public key. Only the
 server that holds the private key corresponding to the certificate
 public key can derive the same shared secret. This shared secret is
 mixed into the handshake’s key schedule. The client does not have to
 wait for the server’s Finished message before it can send data. The
 client knows that its message can only be decrypted if the server was
 able to derive the authentication shared secret encapsulated in the
 KEMEncapsulation message.

 Finished messages are sent as in TLS 1.3, and achieve full explicit
 authentication.

Wiggers, et al. Expires 17 October 2024 [Page 10]

Internet-Draft AuthKEM April 2024

3.1. Client authentication

 For client authentication, the server sends the CertificateRequest
 message as in [RFC8446]. This message can not be authenticated in
 the AuthKEM handshake: we will discuss the implications below.

 As in [RFC8446], section 4.4.2, if and only if the client receives
 CertificateRequest, it MUST send a Certificate message. If the
 client has no suitable certificate, it MUST send a Certificate
 message containing no certificates. If the server is satisfied with
 the provided certificate, it MUST send back a KEMEncapsulation
 message, containing the encapsulation to the client’s certificate.
 The resulting shared secret is mixed into the key schedule. This
 ensures any messages sent using keys derived from it are covered by
 the authentication.

 The AuthKEM handshake with client authentication is given in
 Figure 2.

Wiggers, et al. Expires 17 October 2024 [Page 11]

Internet-Draft AuthKEM April 2024

 Client Server

 Key ^ ClientHello
 Exch | + key_share
 v + signature_algorithms
 -------->
 ServerHello ^ Key
 + key_share v Exch
 <EncryptedExtensions> ^ Server
 <CertificateRequest> v Params
 <Certificate> ^
 ^ <KEMEncapsulation> |
 | {Certificate} --------> |
 Auth | <-------- {KEMEncapsulation} | Auth
 v {Finished} --------> |
 [Application Data] --------> |
 <------- {Finished} v

 [Application Data] <-------> [Application Data]

 + Indicates noteworthy extensions sent in the
 previously noted message.
 <> Indicates messages protected using keys
 derived from a [sender]_handshake_traffic_secret.
 {} Indicates messages protected using keys
 derived from a
 [sender]_authenticated_handshake_traffic_secret.
 [] Indicates messages protected using keys
 derived from [sender]_application_traffic_secret_N.

 Figure 2: Message Flow for KEM-Authentication (KEM-Auth)
 Handshake with client authentication.

 If the server is not satisfied with the client’s certificates, it
 MAY, at its discretion, decide to continue or terminate the
 handshake. If it decides to continue, it MUST NOT send back a
 KEMEncapsulation message and the client and server MUST compute the
 encryption keys as in the server-only authenticated AuthKEM
 handshake. The Certificate remains included in the transcript. The
 client MUST NOT assume it has been authenticated.

 Unfortunately, AuthKEM client authentication requires an extra round-
 trip. Clients that know the server’s long-term public KEM key MAY
 choose to use the abbreviated AuthKEM handshake and opportunistically
 send the client certificate as a 0-RTT-like message. This mechanism
 is discussed in [I-D.draft-wiggers-tls-authkem-psk].

Wiggers, et al. Expires 17 October 2024 [Page 12]

Internet-Draft AuthKEM April 2024

3.2. Relevant handshake messages

 After the Key Exchange and Server Parameters phase of TLS 1.3
 handshake, the client and server exchange implicitly authenticated
 messages. KEM-based authentication uses the same set of messages
 every time that certificate-based authentication is needed.
 Specifically:

 * Certificate: The certificate of the endpoint and any per-
 certificate extensions. This message MUST be omitted by the
 client if the server did not send a CertificateRequest message
 (thus indicating that the client should not authenticate with a
 certificate). For AuthKEM, Certificate MUST include the long-term
 KEM public key. Certificates MUST be handled in accordance with
 [RFC8446], section 4.4.2.4.

 * KEMEncapsulation: A key encapsulation against the certificate’s
 long-term public key, which yields an implicitly authenticated
 shared secret.

3.3. Overview of key differences with RFC8446 TLS 1.3

 * New types of signature_algorithms for KEMs.

 * Public keys in certificates are KEM algorithms.

 * New handshake message KEMEncapsulation.

 * The key schedule mixes in the shared secrets from the
 authentication.

 * The Certificate is sent encrypted with a new handshake encryption
 key.

 * The client sends Finished before the server.

 * The client sends data before the server has sent Finished.

3.4. Implicit and explicit authentication

 The data that the client MAY transmit to the server before having
 received the server’s Finished is encrypted using ciphersuites chosen
 based on the client’s and server’s advertised preferences in the
 ClientHello and ServerHello messages. The ServerHello message can
 however not be authenticated before the Finished message from the
 server is verified. The full implications of this are discussed in
 the Security Considerations section.

Wiggers, et al. Expires 17 October 2024 [Page 13]

Internet-Draft AuthKEM April 2024

 Upon receiving the client’s authentication messages, the server
 responds with its Finished message, which achieves explicit
 authentication. Upon receiving the server’s Finished message, the
 client achieves explicit authentication. Receiving this message
 retroactively confirms the server’s cryptographic parameter choices.

3.5. Authenticating CertificateRequest

 The CertificateRequest message can not be authenticated during the
 AuthKEM handshake; only after the Finished message from the server
 has been processed, it can be proven as authentic. The security
 implications of this are discussed later.

 *This is discussed in GitHub issue #16 (https://github.com/kemtls/
 draft-celi-wiggers-tls-authkem/issues/16). We would welcome feedback
 there.*

 Clients MAY choose to only accept post-handshake authentication.

 TODO: Should they indicate this? TLS Flag?

4. Implementation

 In this section we will discuss the implementation details such as
 extensions and key schedule.

4.1. Negotiation of AuthKEM

 Clients will indicate support for this mode by negotiating it as if
 it were a signature scheme (part of the signature_algorithms
 extension). We thus add these new signature scheme values (even
 though, they are not signature schemes) for the KEMs defined in
 [RFC9180] Section 7.1. Note that we will be only using their
 internal KEM’s API defined there.

enum {
 dhkem_p256_sha256 => TBD,
 dhkem_p384_sha384 => TBD,
 dhkem_p521_sha512 => TBD,
 dhkem_x25519_sha256 => 0xFE01,
 dhkem_x448_sha512 => TBD,
 kem_x25519kyber768 => TBD, /*draft-westerbaan-cfrg-hpke-xyber768d00*/
}

 Please give feedback on which KEMs should be included

Wiggers, et al. Expires 17 October 2024 [Page 14]

Internet-Draft AuthKEM April 2024

 When present in the signature_algorithms extension, these values
 indicate AuthKEM support with the specified key exchange mode. These
 values MUST NOT appear in signature_algorithms_cert, as this
 extension specifies the signing algorithms by which certificates are
 signed.

4.2. Protocol messages

 The handshake protocol is used to negotiate the security parameters
 of a connection, as in TLS 1.3. It uses the same messages, expect
 for the addition of a KEMEncapsulation message and does not use the
 CertificateVerify one.

 enum {
 ...
 kem_encapsulation(30),
 ...
 (255)
 } HandshakeType;

 struct {
 HandshakeType msg_type; /* handshake type */
 uint24 length; /* remaining bytes in message */
 select (Handshake.msg_type) {
 ...
 case kem_encapsulation: KEMEncapsulation;
 ...
 };
 } Handshake;

 Protocol messages MUST be sent in the order defined in Section 4. A
 peer which receives a handshake message in an unexpected order MUST
 abort the handshake with a "unexpected_message" alert.

 The KEMEncapsulation message is defined as follows:

 struct {
 opaque certificate_request_context<0..2^8-1>
 opaque encapsulation<0..2^16-1>;
 } KEMEncapsulation;

 The encapsulation field is the result of a Encapsulate function. The
 Encapsulate() function will also result in a shared secret (ssS or
 ssC, depending on the peer) which is used to derive the AHS or MS
 secrets (See Section 4.3.1).

Wiggers, et al. Expires 17 October 2024 [Page 15]

Internet-Draft AuthKEM April 2024

 If the KEMEncapsulation message is sent by a server, the
 authentication algorithm MUST be one offered in the client’s
 signature_algorithms extension. Otherwise, the server MUST terminate
 the handshake with an "unsupported_certificate" alert.

 If sent by a client, the authentication algorithm used in the
 signature MUST be one of those present in the
 supported_signature_algorithms field of the signature_algorithms
 extension in the CertificateRequest message.

 In addition, the authentication algorithm MUST be compatible with the
 key(s) in the sender’s end-entity certificate.

 The receiver of a KEMEncapsulation message MUST perform the
 Decapsulate() operation by using the sent encapsulation and the
 private key of the public key advertised in the end-entity
 certificate sent. The Decapsulate() function will also result on a
 shared secret (ssS or ssC, depending on the Server or Client
 executing it respectively) which is used to derive the AHS or MS
 secrets.

 certificate_request_context is included to allow the recipient to
 identify the certificate against which the encapsulation was
 generated. It MUST be set to the value in the Certificate message to
 which the encapsulation was computed.

4.3. Cryptographic computations

 The AuthKEM handshake establishes three input secrets which are
 combined to create the actual working keying material, as detailed
 below. The key derivation process incorporates both the input
 secrets and the handshake transcript. Note that because the
 handshake transcript includes the random values from the Hello
 messages, any given handshake will have different traffic secrets,
 even if the same input secrets are used.

4.3.1. Key schedule for full AuthKEM handshakes

 AuthKEM uses the same HKDF-Extract and HKDF-Expand functions as
 defined by TLS 1.3, in turn defined by [RFC5869].

 Keys are derived from two input secrets using the HKDF-Extract and
 Derive-Secret functions. The general pattern for adding a new secret
 is to use HKDF-Extract with the Salt being the current secret state
 and the Input Keying Material (IKM) being the new secret to be added.

 The notable differences are:

Wiggers, et al. Expires 17 October 2024 [Page 16]

Internet-Draft AuthKEM April 2024

 * The addition of the Authenticated Handshake Secret and a new set
 of handshake traffic encryption keys.

 * The inclusion of the SSs and SSc (if present) shared secrets as
 IKM to Authenticated Handshake Secret and Main Secret,
 respectively.

 The full key schedule proceeds as follows:

 0
 |
 v
 PSK -> HKDF-Extract = Early Secret
 |
 +--> Derive-Secret(., "ext binder" | "res binder", "")
 | = binder_key
 |
 +--> Derive-Secret(., "c e traffic", ClientHello)
 | = client_early_traffic_secret
 |
 +--> Derive-Secret(., "e exp master", ClientHello)
 | = early_exporter_master_secret
 v
 Derive-Secret(., "derived", "")
 |
 v
 (EC)DHE -> HKDF-Extract = Handshake Secret
 |
 +--> Derive-Secret(., "c hs traffic",
 | ClientHello...ServerHello)
 | = client_handshake_traffic_secret
 |
 +--> Derive-Secret(., "s hs traffic",
 | ClientHello...ServerHello)
 | = server_handshake_traffic_secret
 v
 Derive-Secret(., "derived", "") = dHS
 |
 v
 SSs -> HKDF-Extract = Authenticated Handshake Secret
 |
 +--> Derive-Secret(., "c ahs traffic",
 | ClientHello...KEMEncapsulation)
 | = client_handshake_authenticated_traffic_secret
 |
 +--> Derive-Secret(., "s ahs traffic",
 | ClientHello...KEMEncapsulation)
 | = server_handshake_authenticated_traffic_secret

Wiggers, et al. Expires 17 October 2024 [Page 17]

Internet-Draft AuthKEM April 2024

 v
 Derive-Secret(., "derived", "") = dAHS
 |
 v
 SSc||0 * -> HKDF-Extract = Main Secret
 |
 +--> Derive-Secret(., "c ap traffic",
 | ClientHello...client Finished)
 | = client_application_traffic_secret_0
 |
 +--> Derive-Secret(., "s ap traffic",
 | ClientHello...server Finished)
 | = server_application_traffic_secret_0
 |
 +--> Derive-Secret(., "exp master",
 | ClientHello...server Finished)
 | = exporter_master_secret
 |
 +--> Derive-Secret(., "res master",
 ClientHello...server Finished)
 = resumption_master_secret

 *: if client authentication was requested, the ‘SSc‘ value should
 be used. Otherwise, the ‘0‘ value is used.

4.3.2. Computations of KEM shared secrets

 The operations to compute SSs or SSc from the client are:

 SSs, encapsulation <- Encapsulate(public_key_server,
 "server authentication")
 SSc <- Decapsulate(encapsulation, private_key_client,
 "client authentication")

 The operations to compute SSs or SSc from the server are:

 SSs <- Decapsulate(encapsulation, private_key_server
 "server authentication")
 SSc, encapsulation <- Encapsulate(public_key_client,
 "client authentication")

4.3.3. Explicit Authentication Messages

 AuthKEM upgrades implicit to explicit authentication through the
 Finished message. Note that in the full handshake, AuthKEM achieves
 explicit authentication only when the server sends the final Finished
 message (the client is only implicitly authenticated when they send
 their Finished message).

Wiggers, et al. Expires 17 October 2024 [Page 18]

Internet-Draft AuthKEM April 2024

 Full downgrade resilience and forward secrecy is achieved once the
 AuthKEM handshake completes.

 The key used to compute the Finished message MUST be computed from
 the MainSecret using HKDF (instead of a key derived from HS as in
 [RFC8446]). Specifically:

 server/client_finished_key =
 HKDF-Expand-Label(MainSecret,
 server/client_label,
 "", Hash.length)
 server_label = "tls13 server finished"
 client_label = "tls13 client finished"

 The verify_data value is computed as follows. Note that instead of
 what is specified in [RFC8446], we use the full transcript for both
 server and client Finished messages:

 server/client_verify_data =
 HMAC(server/client_finished_key,
 Transcript-Hash(Handshake Context,
 Certificate*,
 KEMEncapsulation*,
 Finished**))

 * Only included if present.
 ** The party who last sends the finished message in terms of flights
 includes the other party’s Finished message.

 Any records following a Finished message MUST be encrypted under the
 appropriate application traffic key as described in [RFC8446]. In
 particular, this includes any alerts sent by the server in response
 to client Certificate and KEMEncapsulation messages.

 See [SSW20] for a full treatment of implicit and explicit
 authentication.

5. Security Considerations

5.1. Implicit authentication

 Because preserving a 1/1.5RTT handshake in KEM-Auth requires the
 client to send its request in the same flight when the ServerHello
 message is received, it can not yet have explicitly authenticated the
 server. However, through the inclusion of the key encapsulated to
 the server’s long-term secret, only an authentic server should be
 able to decrypt these messages.

Wiggers, et al. Expires 17 October 2024 [Page 19]

Internet-Draft AuthKEM April 2024

 However, the client can not have received confirmation that the
 server’s choices for symmetric encryption, as specified in the
 ServerHello message, were authentic. These are not authenticated
 until the Finished message from the server arrived. This may allow
 an adversary to downgrade the symmetric algorithms, but only to what
 the client is willing to accept. If such an attack occurs, the
 handshake will also never successfully complete and no data can be
 sent back.

 If the client trusts the symmetric algorithms advertised in its
 ClientHello message, this should not be a concern. A client MUST NOT
 accept any cryptographic parameters it does not include in its own
 ClientHello message.

 If client authentication is used, explicit authentication is reached
 before any application data, on either client or server side, is
 transmitted.

 Application Data MUST NOT be sent prior to sending the Finished
 message, except as specified in Section 2.3 of [RFC8446]. Note that
 while the client MAY send Application Data prior to receiving the
 server’s last explicit Authentication message, any data sent at that
 point is, being sent to an implicitly authenticated peer.

5.2. Authentication of Certificate Request

 Due to the implicit authentication of the server’s messages during
 the full AuthKEM handshake, the CertificateRequest message can not be
 authenticated before the client received Finished.

 The key schedule guarantees that the server can not read the client’s
 certificate message (as discussed above). An active adversary that
 maliciously inserts a CertificateRequest message will also result in
 a mismatch in transcript hashes, which will cause the handshake to
 fail.

 However, there may be side effects. The adversary might learn that
 the client has a certificate by observing the length of the messages
 sent. There may also be side effects, especially in situations where
 the client is prompted to e.g. approve use or unlock a certificate
 stored encrypted or on a smart card.

Wiggers, et al. Expires 17 October 2024 [Page 20]

Internet-Draft AuthKEM April 2024

5.3. Other security considerations

 * Because the Main Secret is derived from both the ephemeral key
 exchange, as well as from the key exchanges completed for server
 and (optionally) client authentication, the MS secret always
 reflects the peers’ views of the authentication status correctly.
 This is an improvement over TLS 1.3 for client authentication.

 * The academic works proposing AuthKEM (KEMTLS) contains an in-depth
 technical discussion of and a proof of the security of the
 handshake protocol without client authentication [SSW20], [Wig24].

 * The work proposing the variant protocol [SSW21], [Wig24] with pre-
 distributed public keys (the abbreviated AuthKEM handshake) has a
 proof for both unilaterally and mutually authenticated handshakes.

 * We have proofs of the security of KEMTLS and KEMTLS-PDK in
 Tamarin. [CHSW22]

 * Application Data sent prior to receiving the server’s last
 explicit authentication message (the Finished message) can be
 subject to a client certificate suite downgrade attack. Full
 downgrade resilience and forward secrecy is achieved once the
 handshake completes.

 * The client’s certificate is kept secret from active observers by
 the derivation of the client_authenticated_handshake_secret, which
 ensures that only the intended server can read the client’s
 identity.

 * If AuthKEM client authentication is used, the resulting shared
 secret is included in the key schedule. This ensures that both
 peers have a consistent view of the authentication status, unlike
 [RFC8446].

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Wiggers, et al. Expires 17 October 2024 [Page 21]

Internet-Draft AuthKEM April 2024

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/rfc/rfc8446>.

 [RFC9180] Barnes, R., Bhargavan, K., Lipp, B., and C. Wood, "Hybrid
 Public Key Encryption", RFC 9180, DOI 10.17487/RFC9180,
 February 2022, <https://www.rfc-editor.org/rfc/rfc9180>.

6.2. Informative References

 [CHSW22] Celi, S., Hoyland, J., Stebila, D., and T. Wiggers, "A
 tale of two models: formal verification of KEMTLS in
 Tamarin", ESORICS 2022 , DOI 10.1007/978-3-031-17143-7_4,
 IACR ePrint https://ia.cr/2022/1111, August 2022,
 <https://doi.org/10.1007/978-3-031-17143-7_4>.

 [DILITHIUM]
 Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V.,
 Schwabe, P., Seiler, G., and D. Stehlé, "CRYSTALS-
 Dilithium", 2021, <https://pq-crystals.org/dilithium/>.

 [FALCON] Fouque, P., Hoffstein, J., Kirchner, P., Lyubashevsky, V.,
 Pornin, T., Ricosset, T., Seiler, G., Whyte, W., and Z.
 Zhang, "Falcon", 2021, <https://falcon-sign.info>.

 [I-D.draft-cfrg-schwabe-kyber]
 Schwabe, P. and B. Westerbaan, "Kyber Post-Quantum KEM",
 Work in Progress, Internet-Draft, draft-cfrg-schwabe-
 kyber-04, 2 January 2024,
 <https://datatracker.ietf.org/doc/html/draft-cfrg-schwabe-
 kyber-04>.

 [I-D.draft-davidben-tls-merkle-tree-certs]
 Benjamin, D., O’Brien, D., and B. Westerbaan, "Merkle Tree
 Certificates for TLS", Work in Progress, Internet-Draft,
 draft-davidben-tls-merkle-tree-certs-02, 4 March 2024,
 <https://datatracker.ietf.org/doc/html/draft-davidben-tls-
 merkle-tree-certs-02>.

 [I-D.draft-jackson-tls-cert-abridge]
 Jackson, D., "Abridged Compression for WebPKI
 Certificates", Work in Progress, Internet-Draft, draft-
 jackson-tls-cert-abridge-00, 6 July 2023,
 <https://datatracker.ietf.org/doc/html/draft-jackson-tls-
 cert-abridge-00>.

Wiggers, et al. Expires 17 October 2024 [Page 22]

Internet-Draft AuthKEM April 2024

 [I-D.draft-kampanakis-tls-scas-latest]
 Kampanakis, P., Bytheway, C., Westerbaan, B., and M.
 Thomson, "Suppressing CA Certificates in TLS 1.3", Work in
 Progress, Internet-Draft, draft-kampanakis-tls-scas-
 latest-03, 5 January 2023,
 <https://datatracker.ietf.org/doc/html/draft-kampanakis-
 tls-scas-latest-03>.

 [I-D.draft-westerbaan-cfrg-hpke-xyber768d00]
 Westerbaan, B. and C. A. Wood, "X25519Kyber768Draft00
 hybrid post-quantum KEM for HPKE", Work in Progress,
 Internet-Draft, draft-westerbaan-cfrg-hpke-xyber768d00-02,
 4 May 2023, <https://datatracker.ietf.org/doc/html/draft-
 westerbaan-cfrg-hpke-xyber768d00-02>.

 [I-D.draft-wiggers-tls-authkem-psk]
 Wiggers, T., Celi, S., Schwabe, P., Stebila, D., and N.
 Sullivan, "KEM-based pre-shared-key handshakes for TLS
 1.3", Work in Progress, Internet-Draft, draft-wiggers-tls-
 authkem-psk-00, 18 August 2023,
 <https://datatracker.ietf.org/doc/html/draft-wiggers-tls-
 authkem-psk-00>.

 [I-D.ietf-tls-ctls]
 Rescorla, E., Barnes, R., Tschofenig, H., and B. M.
 Schwartz, "Compact TLS 1.3", Work in Progress, Internet-
 Draft, draft-ietf-tls-ctls-09, 23 October 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-tls-
 ctls-09>.

 [I-D.ietf-tls-semistatic-dh]
 Rescorla, E., Sullivan, N., and C. A. Wood, "Semi-Static
 Diffie-Hellman Key Establishment for TLS 1.3", Work in
 Progress, Internet-Draft, draft-ietf-tls-semistatic-dh-01,
 7 March 2020, <https://datatracker.ietf.org/doc/html/
 draft-ietf-tls-semistatic-dh-01>.

 [I-D.ietf-tls-subcerts]
 Barnes, R., Iyengar, S., Sullivan, N., and E. Rescorla,
 "Delegated Credentials for TLS and DTLS", Work in
 Progress, Internet-Draft, draft-ietf-tls-subcerts-15, 30
 June 2022, <https://datatracker.ietf.org/doc/html/draft-
 ietf-tls-subcerts-15>.

 [K22] Kannwischer, M. J., "Polynomial Multiplication for Post-
 Quantum Cryptography", Ph.D. thesis, 22 April 2022,
 <https://kannwischer.eu/thesis/>.

Wiggers, et al. Expires 17 October 2024 [Page 23]

Internet-Draft AuthKEM April 2024

 [KW16] Krawczyk, H. and H. Wee, "The OPTLS Protocol and TLS 1.3",
 Proceedings of Euro S&P 2016 , 2016,
 <https://ia.cr/2015/978>.

 [KYBER] Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T.,
 Lyubashevsky, V., Schanck, J., Schwabe, P., Seiler, G.,
 and D. Stehlé, "CRYSTALS-Kyber", 2021,
 <https://pq-crystals.org/kyber/>.

 [NISTPQC] NIST, "Post-Quantum Cryptography Standardization", 2020.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/rfc/rfc5869>.

 [RFC6960] Santesson, S., Myers, M., Ankney, R., Malpani, A.,
 Galperin, S., and C. Adams, "X.509 Internet Public Key
 Infrastructure Online Certificate Status Protocol - OCSP",
 RFC 6960, DOI 10.17487/RFC6960, June 2013,
 <https://www.rfc-editor.org/rfc/rfc6960>.

 [RFC6962] Laurie, B., Langley, A., and E. Kasper, "Certificate
 Transparency", RFC 6962, DOI 10.17487/RFC6962, June 2013,
 <https://www.rfc-editor.org/rfc/rfc6962>.

 [RFC8410] Josefsson, S. and J. Schaad, "Algorithm Identifiers for
 Ed25519, Ed448, X25519, and X448 for Use in the Internet
 X.509 Public Key Infrastructure", RFC 8410,
 DOI 10.17487/RFC8410, August 2018,
 <https://www.rfc-editor.org/rfc/rfc8410>.

 [RFC8879] Ghedini, A. and V. Vasiliev, "TLS Certificate
 Compression", RFC 8879, DOI 10.17487/RFC8879, December
 2020, <https://www.rfc-editor.org/rfc/rfc8879>.

 [SSW20] Stebila, D., Schwabe, P., and T. Wiggers, "Post-Quantum
 TLS without Handshake Signatures", ACM CCS 2020 ,
 DOI 10.1145/3372297.3423350, IACR
 ePrint https://ia.cr/2020/534, November 2020,
 <https://doi.org/10.1145/3372297.3423350>.

 [SSW21] Stebila, D., Schwabe, P., and T. Wiggers, "More Efficient
 KEMTLS with Pre-Shared Keys", ESORICS 2021 ,
 DOI 10.1007/978-3-030-88418-5_1, IACR
 ePrint https://ia.cr/2021/779, May 2021,
 <https://doi.org/10.1007/978-3-030-88418-5_1>.

Wiggers, et al. Expires 17 October 2024 [Page 24]

Internet-Draft AuthKEM April 2024

 [Wig24] Wiggers, T., "Post-Quantum TLS", PhD
 thesis https://thomwiggers.nl/publication/thesis/, 9
 January 2024.

Appendix A. Open points of discussion

 The following are open points for discussion. The corresponding
 Github issues will be linked.

A.1. Authentication concerns for client authentication requests.

 Tracked by Issue #16 (https://github.com/kemtls/draft-celi-wiggers-
 tls-authkem/issues/16).

 The certificate request message from the server can not be
 authenticated by the AuthKEM mechanism. This is already somewhat
 discussed above and under security considerations. We might want to
 allow clients to refuse client auth for scenarios where this is a
 concern.

A.2. Interaction with signing certificates

 Tracked by Issue #20 (https://github.com/kemtls/draft-celi-wiggers-
 tls-authkem/issues/20).

 In the current state of the draft, we have not yet discussed
 combining traditional signature-based authentication with KEM-based
 authentication. One might imagine that the Client has a sigining
 certificate and the server has a KEM public key.

 In the current draft, clients MUST use a KEM certificate algorithm if
 the server negotiated AuthKEM.

Acknowledgements

 Early versions of this work were supported by the European Research
 Council through Starting Grant No. 805031 (EPOQUE).

 Part of this work was supported by the NLNet NGI Assure theme fund
 project "Standardizing KEMTLS" (https://nlnet.nl/project/KEMTLS/)

Authors’ Addresses

 Thom Wiggers
 PQShield
 Nijmegen
 Email: thom@thomwiggers.nl

Wiggers, et al. Expires 17 October 2024 [Page 25]

Internet-Draft AuthKEM April 2024

 Sofía Celi
 Brave Software
 Lisbon
 Portugal
 Email: cherenkov@riseup.net

 Peter Schwabe
 Radboud University and MPI-SP
 Email: peter@cryptojedi.org

 Douglas Stebila
 University of Waterloo
 Waterloo, ON
 Canada
 Email: dstebila@uwaterloo.ca

 Nick Sullivan
 Email: nicholas.sullivan+ietf@gmail.com

Wiggers, et al. Expires 17 October 2024 [Page 26]

