
tls E. Rescorla
Internet-Draft Windy Hill Systems, LLC
Intended status: Standards Track K. Oku
Expires: 5 September 2024 Fastly
 N. Sullivan
 Cryptography Consulting LLC
 C. A. Wood
 Cloudflare
 4 March 2024

 TLS Encrypted Client Hello
 draft-ietf-tls-esni-18

Abstract

 This document describes a mechanism in Transport Layer Security (TLS)
 for encrypting a ClientHello message under a server public key.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Source for this draft and an issue tracker can be found at
 https://github.com/tlswg/draft-ietf-tls-esni
 (https://github.com/tlswg/draft-ietf-tls-esni).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 5 September 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Rescorla, et al. Expires 5 September 2024 [Page 1]

Internet-Draft TLS Encrypted Client Hello March 2024

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 4
 2. Conventions and Definitions 5
 3. Overview . 5
 3.1. Topologies . 5
 3.2. Encrypted ClientHello (ECH) 6
 4. Encrypted ClientHello Configuration 7
 4.1. Configuration Identifiers 10
 4.2. Configuration Extensions 11
 5. The "encrypted_client_hello" Extension 11
 5.1. Encoding the ClientHelloInner 13
 5.2. Authenticating the ClientHelloOuter 15
 6. Client Behavior . 15
 6.1. Offering ECH . 15
 6.1.1. Encrypting the ClientHello 17
 6.1.2. GREASE PSK . 18
 6.1.3. Recommended Padding Scheme 19
 6.1.4. Determining ECH Acceptance 20
 6.1.5. Handshaking with ClientHelloInner 20
 6.1.6. Handshaking with ClientHelloOuter 22
 6.1.7. Authenticating for the Public Name 23
 6.2. GREASE ECH . 23
 7. Server Behavior . 24
 7.1. Client-Facing Server 25
 7.1.1. Sending HelloRetryRequest 27
 7.2. Backend Server . 28
 7.2.1. Sending HelloRetryRequest 29
 8. Deployment Considerations 29
 8.1. Compatibility Issues 30
 8.1.1. Misconfiguration and Deployment Concerns 30
 8.1.2. Middleboxes . 31
 8.2. Deployment Impact . 31
 9. Compliance Requirements 31
 10. Security Considerations 32
 10.1. Security and Privacy Goals 32
 10.2. Unauthenticated and Plaintext DNS 33
 10.3. Client Tracking . 34

Rescorla, et al. Expires 5 September 2024 [Page 2]

Internet-Draft TLS Encrypted Client Hello March 2024

 10.4. Ignored Configuration Identifiers and Trial
 Decryption . 34
 10.5. Outer ClientHello 34
 10.6. Inner ClientHello 35
 10.7. Related Privacy Leaks 35
 10.8. Cookies . 36
 10.9. Attacks Exploiting Acceptance Confirmation 36
 10.10. Comparison Against Criteria 37
 10.10.1. Mitigate Cut-and-Paste Attacks 37
 10.10.2. Avoid Widely Shared Secrets 37
 10.10.3. Prevent SNI-Based Denial-of-Service Attacks 38
 10.10.4. Do Not Stick Out 38
 10.10.5. Maintain Forward Secrecy 39
 10.10.6. Enable Multi-party Security Contexts 39
 10.10.7. Support Multiple Protocols 40
 10.11. Padding Policy . 40
 10.12. Active Attack Mitigations 40
 10.12.1. Client Reaction Attack Mitigation 40
 10.12.2. HelloRetryRequest Hijack Mitigation 41
 10.12.3. ClientHello Malleability Mitigation 42
 10.12.4. ClientHelloInner Packet Amplification Mitigation . 44
 11. IANA Considerations . 44
 11.1. Update of the TLS ExtensionType Registry 44
 11.2. Update of the TLS Alert Registry 45
 11.3. ECH Configuration Extension Registry 45
 12. References . 46
 12.1. Normative References 46
 12.2. Informative References 47
 Appendix A. ECHConfig Extension Guidance 48
 Appendix B. Linear-time Outer Extension Processing 48
 Appendix C. Acknowledgements 49
 Appendix D. Change Log . 49
 D.1. Since draft-ietf-tls-esni-16 49
 D.2. Since draft-ietf-tls-esni-15 49
 D.3. Since draft-ietf-tls-esni-14 49
 D.4. Since draft-ietf-tls-esni-13 49
 D.5. Since draft-ietf-tls-esni-12 50
 D.6. Since draft-ietf-tls-esni-11 50
 D.7. Since draft-ietf-tls-esni-10 50
 D.8. Since draft-ietf-tls-esni-09 51
 Authors’ Addresses . 51

Rescorla, et al. Expires 5 September 2024 [Page 3]

Internet-Draft TLS Encrypted Client Hello March 2024

1. Introduction

 DISCLAIMER: This draft is work-in-progress and has not yet seen
 significant (or really any) security analysis. It should not be used
 as a basis for building production systems. This published version
 of the draft has been designated an "implementation draft" for
 testing and interop purposes.

 Although TLS 1.3 [RFC8446] encrypts most of the handshake, including
 the server certificate, there are several ways in which an on-path
 attacker can learn private information about the connection. The
 plaintext Server Name Indication (SNI) extension in ClientHello
 messages, which leaks the target domain for a given connection, is
 perhaps the most sensitive, unencrypted information in TLS 1.3.

 This document specifies a new TLS extension, called Encrypted Client
 Hello (ECH), that allows clients to encrypt their ClientHello to such
 a deployment. This protects the SNI and other potentially sensitive
 fields, such as the ALPN list [RFC7301]. Co-located servers with
 consistent externally visible TLS configurations and behavior,
 including supported versions and cipher suites and how they respond
 to incoming client connections, form an anonymity set. (Note that
 implementation-specific choices, such as extension ordering within
 TLS messages or division of data into record-layer boundaries, can
 result in different externally visible behavior, even for servers
 with consistent TLS configurations.) Usage of this mechanism reveals
 that a client is connecting to a particular service provider, but
 does not reveal which server from the anonymity set terminates the
 connection. Deployment implications of this feature are discussed in
 Section 8.

 ECH is not in itself sufficient to protect the identity of the
 server. The target domain may also be visible through other
 channels, such as plaintext client DNS queries or visible server IP
 addresses. However, DoH [RFC8484] and DPRIVE [RFC7858] [RFC8094]
 provide mechanisms for clients to conceal DNS lookups from network
 inspection, and many TLS servers host multiple domains on the same IP
 address. Private origins may also be deployed behind a common
 provider, such as a reverse proxy. In such environments, the SNI
 remains the primary explicit signal used to determine the server’s
 identity.

 ECH is supported in TLS 1.3 [RFC8446], DTLS 1.3 [RFC9147], and newer
 versions of the TLS and DTLS protocols.

Rescorla, et al. Expires 5 September 2024 [Page 4]

Internet-Draft TLS Encrypted Client Hello March 2024

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here. All TLS notation comes from [RFC8446],
 Section 3.

3. Overview

 This protocol is designed to operate in one of two topologies
 illustrated below, which we call "Shared Mode" and "Split Mode".
 These modes are described in the following section.

3.1. Topologies

 +---------------------+
 | |
 | 2001:DB8::1111 |
 | |
 Client <-----> | private.example.org |
 | |
 | public.example.com |
 | |
 +---------------------+
 Server
 (Client-Facing and Backend Combined)

 Figure 1: Shared Mode Topology

 In Shared Mode, the provider is the origin server for all the domains
 whose DNS records point to it. In this mode, the TLS connection is
 terminated by the provider.

 +--------------------+ +---------------------+
 | | | |
 | 2001:DB8::1111 | | 2001:DB8::EEEE |
 Client <----------------------------->| |
 | public.example.com | | private.example.com |
 | | | |
 +--------------------+ +---------------------+
 Client-Facing Server Backend Server

 Figure 2: Split Mode Topology

Rescorla, et al. Expires 5 September 2024 [Page 5]

Internet-Draft TLS Encrypted Client Hello March 2024

 In Split Mode, the provider is not the origin server for private
 domains. Rather, the DNS records for private domains point to the
 provider, and the provider’s server relays the connection back to the
 origin server, who terminates the TLS connection with the client.
 Importantly, the service provider does not have access to the
 plaintext of the connection beyond the unencrypted portions of the
 handshake.

 In the remainder of this document, we will refer to the ECH-service
 provider as the "client-facing server" and to the TLS terminator as
 the "backend server". These are the same entity in Shared Mode, but
 in Split Mode, the client-facing and backend servers are physically
 separated.

 See Section 10 for more discussion about the ECH threat model and how
 it relates to the client, client-facing server, and backend server.

3.2. Encrypted ClientHello (ECH)

 A client-facing server enables ECH by publishing an ECH
 configuration, which is an encryption public key and associated
 metadata. The server must publish this for all the domains it serves
 via Shared or Split Mode. This document defines the ECH
 configuration’s format, but delegates DNS publication details to
 [HTTPS-RR]. See [ECH-IN-DNS] for specifics about how ECH
 configurations are advertised in HTTPS records. Other delivery
 mechanisms are also possible. For example, the client may have the
 ECH configuration preconfigured.

 When a client wants to establish a TLS session with some backend
 server, it constructs a private ClientHello, referred to as the
 ClientHelloInner. The client then constructs a public ClientHello,
 referred to as the ClientHelloOuter. The ClientHelloOuter contains
 innocuous values for sensitive extensions and an
 "encrypted_client_hello" extension (Section 5), which carries the
 encrypted ClientHelloInner. Finally, the client sends
 ClientHelloOuter to the server.

 The server takes one of the following actions:

 1. If it does not support ECH or cannot decrypt the extension, it
 completes the handshake with ClientHelloOuter. This is referred
 to as rejecting ECH.

 2. If it successfully decrypts the extension, it forwards the
 ClientHelloInner to the backend server, which completes the
 handshake. This is referred to as accepting ECH.

Rescorla, et al. Expires 5 September 2024 [Page 6]

Internet-Draft TLS Encrypted Client Hello March 2024

 Upon receiving the server’s response, the client determines whether
 or not ECH was accepted (Section 6.1.4) and proceeds with the
 handshake accordingly. When ECH is rejected, the resulting
 connection is not usable by the client for application data.
 Instead, ECH rejection allows the client to retry with up-to-date
 configuration (Section 6.1.6).

 The primary goal of ECH is to ensure that connections to servers in
 the same anonymity set are indistinguishable from one another.
 Moreover, it should achieve this goal without affecting any existing
 security properties of TLS 1.3. See Section 10.1 for more details
 about the ECH security and privacy goals.

4. Encrypted ClientHello Configuration

 ECH uses HPKE for public key encryption [HPKE]. The ECH
 configuration is defined by the following ECHConfig structure.

Rescorla, et al. Expires 5 September 2024 [Page 7]

Internet-Draft TLS Encrypted Client Hello March 2024

 opaque HpkePublicKey<1..2^16-1>;
 uint16 HpkeKemId; // Defined in RFC9180
 uint16 HpkeKdfId; // Defined in RFC9180
 uint16 HpkeAeadId; // Defined in RFC9180
 uint16 ECHConfigExtensionType; // Defined in Section 11.3

 struct {
 HpkeKdfId kdf_id;
 HpkeAeadId aead_id;
 } HpkeSymmetricCipherSuite;

 struct {
 uint8 config_id;
 HpkeKemId kem_id;
 HpkePublicKey public_key;
 HpkeSymmetricCipherSuite cipher_suites<4..2^16-4>;
 } HpkeKeyConfig;

 struct {
 ECHConfigExtensionType type;
 opaque data<0..2^16-1>;
 } ECHConfigExtension;

 struct {
 HpkeKeyConfig key_config;
 uint8 maximum_name_length;
 opaque public_name<1..255>;
 ECHConfigExtension extensions<0..2^16-1>;
 } ECHConfigContents;

 struct {
 uint16 version;
 uint16 length;
 select (ECHConfig.version) {
 case 0xfe0d: ECHConfigContents contents;
 }
 } ECHConfig;

 The structure contains the following fields:

 version The version of ECH for which this configuration is used.
 Beginning with draft-08, the version is the same as the code point
 for the "encrypted_client_hello" extension. Clients MUST ignore
 any ECHConfig structure with a version they do not support.

 length The length, in bytes, of the next field. This length field
 allows implementations to skip over the elements in such a list
 where they cannot parse the specific version of ECHConfig.

Rescorla, et al. Expires 5 September 2024 [Page 8]

Internet-Draft TLS Encrypted Client Hello March 2024

 contents An opaque byte string whose contents depend on the version.
 For this specification, the contents are an ECHConfigContents
 structure.

 The ECHConfigContents structure contains the following fields:

 key_config A HpkeKeyConfig structure carrying the configuration
 information associated with the HPKE public key. Note that this
 structure contains the config_id field, which applies to the
 entire ECHConfigContents.

 maximum_name_length The longest name of a backend server, if known.
 If not known, this value can be set to zero. It is used to
 compute padding (Section 6.1.3) and does not constrain server name
 lengths. Names may exceed this length if, e.g., the server uses
 wildcard names or added new names to the anonymity set.

 public_name The DNS name of the client-facing server, i.e., the
 entity trusted to update the ECH configuration. This is used to
 correct misconfigured clients, as described in Section 6.1.6.

 Clients MUST ignore any ECHConfig structure whose public_name is
 not parsable as a dot-separated sequence of LDH labels, as defined
 in [RFC5890], Section 2.3.1 or which begins or end with an ASCII
 dot. Clients additionally SHOULD ignore the structure if the
 final LDH label either consists of all ASCII digits (i.e. ’0’
 through ’9’) or is "0x" or "0X" followed by some, possibly empty,
 sequence of ASCII hexadecimal digits (i.e. ’0’ through ’9’, ’a’
 through ’f’, and ’A’ through ’F’). This avoids public_name values
 that may be interpreted as IPv4 literals. Additionally, clients
 MAY ignore the ECHConfig if the length of any label in the DNS
 name is longer than 63 octets, as this is the maximum length of a
 DNS label.

 See Section 6.1.7 for how the client interprets and validates the
 public_name.

 extensions A list of ECHConfigExtension values that the client must
 take into consideration when generating a ClientHello message.
 Each ECHConfigExtension has a 2-octet type and opaque data value,
 where the data value is encoded with a 2-octet integer
 representing the length of the data, in network byte order.
 ECHConfigExtension values are described below (Section 4.2).

 The HpkeKeyConfig structure contains the following fields:

 config_id A one-byte identifier for the given HPKE key

Rescorla, et al. Expires 5 September 2024 [Page 9]

Internet-Draft TLS Encrypted Client Hello March 2024

 configuration. This is used by clients to indicate the key used
 for ClientHello encryption. Section 4.1 describes how client-
 facing servers allocate this value.

 kem_id The HPKE KEM identifier corresponding to public_key. Clients
 MUST ignore any ECHConfig structure with a key using a KEM they do
 not support.

 public_key The HPKE public key used by the client to encrypt
 ClientHelloInner.

 cipher_suites The list of HPKE KDF and AEAD identifier pairs clients
 can use for encrypting ClientHelloInner. See Section 6.1 for how
 clients choose from this list.

 The client-facing server advertises a sequence of ECH configurations
 to clients, serialized as follows.

 ECHConfig ECHConfigList<1..2^16-1>;

 The ECHConfigList structure contains one or more ECHConfig structures
 in decreasing order of preference. This allows a server to support
 multiple versions of ECH and multiple sets of ECH parameters.

4.1. Configuration Identifiers

 A client-facing server has a set of known ECHConfig values, with
 corresponding private keys. This set SHOULD contain the currently
 published values, as well as previous values that may still be in
 use, since clients may cache DNS records up to a TTL or longer.

 Section 7.1 describes a trial decryption process for decrypting the
 ClientHello. This can impact performance when the client-facing
 server maintains many known ECHConfig values. To avoid this, the
 client-facing server SHOULD allocate distinct config_id values for
 each ECHConfig in its known set. The RECOMMENDED strategy is via
 rejection sampling, i.e., to randomly select config_id repeatedly
 until it does not match any known ECHConfig.

 It is not necessary for config_id values across different client-
 facing servers to be distinct. A backend server may be hosted behind
 two different client-facing servers with colliding config_id values
 without any performance impact. Values may also be reused if the
 previous ECHConfig is no longer in the known set.

Rescorla, et al. Expires 5 September 2024 [Page 10]

Internet-Draft TLS Encrypted Client Hello March 2024

4.2. Configuration Extensions

 ECH configuration extensions are used to provide room for additional
 functionality as needed. See Appendix A for guidance on which types
 of extensions are appropriate for this structure.

 The format is as defined in Section 4 and mirrors Section 4.2 of
 [RFC8446]. However, ECH configuration extension types are maintained
 by IANA as described in Section 11.3. ECH configuration extensions
 follow the same interpretation rules as TLS extensions: extensions
 MAY appear in any order, but there MUST NOT be more than one
 extension of the same type in the extensions block. Unlike TLS
 extensions, an extension can be tagged as mandatory by using an
 extension type codepoint with the high order bit set to 1.

 Clients MUST parse the extension list and check for unsupported
 mandatory extensions. If an unsupported mandatory extension is
 present, clients MUST ignore the ECHConfig.

5. The "encrypted_client_hello" Extension

 To offer ECH, the client sends an "encrypted_client_hello" extension
 in the ClientHelloOuter. When it does, it MUST also send the
 extension in ClientHelloInner.

 enum {
 encrypted_client_hello(0xfe0d), (65535)
 } ExtensionType;

 The payload of the extension has the following structure:

 enum { outer(0), inner(1) } ECHClientHelloType;

 struct {
 ECHClientHelloType type;
 select (ECHClientHello.type) {
 case outer:
 HpkeSymmetricCipherSuite cipher_suite;
 uint8 config_id;
 opaque enc<0..2^16-1>;
 opaque payload<1..2^16-1>;
 case inner:
 Empty;
 };
 } ECHClientHello;

Rescorla, et al. Expires 5 September 2024 [Page 11]

Internet-Draft TLS Encrypted Client Hello March 2024

 The outer extension uses the outer variant and the inner extension
 uses the inner variant. The inner extension has an empty payload,
 which is included because TLS servers are not allowed to provide
 extensions in ServerHello which were not included in ClientHello.
 The outer extension has the following fields:

 config_id The ECHConfigContents.key_config.config_id for the chosen
 ECHConfig.

 cipher_suite The cipher suite used to encrypt ClientHelloInner.
 This MUST match a value provided in the corresponding
 ECHConfigContents.cipher_suites list.

 enc The HPKE encapsulated key, used by servers to decrypt the
 corresponding payload field. This field is empty in a
 ClientHelloOuter sent in response to HelloRetryRequest.

 payload The serialized and encrypted EncodedClientHelloInner
 structure, encrypted using HPKE as described in Section 6.1.

 When a client offers the outer version of an "encrypted_client_hello"
 extension, the server MAY include an "encrypted_client_hello"
 extension in its EncryptedExtensions message, as described in
 Section 7.1, with the following payload:

 struct {
 ECHConfigList retry_configs;
 } ECHEncryptedExtensions;

 The response is valid only when the server used the ClientHelloOuter.
 If the server sent this extension in response to the inner variant,
 then the client MUST abort with an "unsupported_extension" alert.

 retry_configs An ECHConfigList structure containing one or more
 ECHConfig structures, in decreasing order of preference, to be
 used by the client as described in Section 6.1.6. These are known
 as the server’s "retry configurations".

 Finally, when the client offers the "encrypted_client_hello", if the
 payload is the inner variant and the server responds with
 HelloRetryRequest, it MUST include an "encrypted_client_hello"
 extension with the following payload:

 struct {
 opaque confirmation[8];
 } ECHHelloRetryRequest;

Rescorla, et al. Expires 5 September 2024 [Page 12]

Internet-Draft TLS Encrypted Client Hello March 2024

 The value of ECHHelloRetryRequest.confirmation is set to
 hrr_accept_confirmation as described in Section 7.2.1.

 This document also defines the "ech_required" alert, which the client
 MUST send when it offered an "encrypted_client_hello" extension that
 was not accepted by the server. (See Section 11.2.)

5.1. Encoding the ClientHelloInner

 Before encrypting, the client pads and optionally compresses
 ClientHelloInner into a EncodedClientHelloInner structure, defined
 below:

 struct {
 ClientHello client_hello;
 uint8 zeros[length_of_padding];
 } EncodedClientHelloInner;

 The client_hello field is computed by first making a copy of
 ClientHelloInner and setting the legacy_session_id field to the empty
 string. Note this field uses the ClientHello structure, defined in
 Section 4.1.2 of [RFC8446] which does not include the Handshake
 structure’s four byte header. The zeros field MUST be all zeroes.

 Repeating large extensions, such as "key_share" with post-quantum
 algorithms, between ClientHelloInner and ClientHelloOuter can lead to
 excessive size. To reduce the size impact, the client MAY substitute
 extensions which it knows will be duplicated in ClientHelloOuter. It
 does so by removing and replacing extensions from
 EncodedClientHelloInner with a single "ech_outer_extensions"
 extension, defined as follows:

 enum {
 ech_outer_extensions(0xfd00), (65535)
 } ExtensionType;

 ExtensionType OuterExtensions<2..254>;

 OuterExtensions contains the removed ExtensionType values. Each
 value references the matching extension in ClientHelloOuter. The
 values MUST be ordered contiguously in ClientHelloInner, and the
 "ech_outer_extensions" extension MUST be inserted in the
 corresponding position in EncodedClientHelloInner. Additionally, the
 extensions MUST appear in ClientHelloOuter in the same relative
 order. However, there is no requirement that they be contiguous.
 For example, OuterExtensions may contain extensions A, B, C, while
 ClientHelloOuter contains extensions A, D, B, C, E, F.

Rescorla, et al. Expires 5 September 2024 [Page 13]

Internet-Draft TLS Encrypted Client Hello March 2024

 The "ech_outer_extensions" extension can only be included in
 EncodedClientHelloInner, and MUST NOT appear in either
 ClientHelloOuter or ClientHelloInner.

 Finally, the client pads the message by setting the zeros field to a
 byte string whose contents are all zeros and whose length is the
 amount of padding to add. Section 6.1.3 describes a recommended
 padding scheme.

 The client-facing server computes ClientHelloInner by reversing this
 process. First it parses EncodedClientHelloInner, interpreting all
 bytes after client_hello as padding. If any padding byte is non-
 zero, the server MUST abort the connection with an
 "illegal_parameter" alert.

 Next it makes a copy of the client_hello field and copies the
 legacy_session_id field from ClientHelloOuter. It then looks for an
 "ech_outer_extensions" extension. If found, it replaces the
 extension with the corresponding sequence of extensions in the
 ClientHelloOuter. The server MUST abort the connection with an
 "illegal_parameter" alert if any of the following are true:

 * Any referenced extension is missing in ClientHelloOuter.

 * Any extension is referenced in OuterExtensions more than once.

 * "encrypted_client_hello" is referenced in OuterExtensions.

 * The extensions in ClientHelloOuter corresponding to those in
 OuterExtensions do not occur in the same order.

 These requirements prevent an attacker from performing a packet
 amplification attack, by crafting a ClientHelloOuter which
 decompresses to a much larger ClientHelloInner. This is discussed
 further in Section 10.12.4.

 Implementations SHOULD construct the ClientHelloInner in linear time.
 Quadratic time implementations (such as may happen via naive copying)
 create a denial of service risk. Appendix B describes a linear-time
 procedure that may be used for this purpose.

Rescorla, et al. Expires 5 September 2024 [Page 14]

Internet-Draft TLS Encrypted Client Hello March 2024

5.2. Authenticating the ClientHelloOuter

 To prevent a network attacker from modifying the ClientHelloOuter
 while keeping the same encrypted ClientHelloInner (see
 Section 10.12.3), ECH authenticates ClientHelloOuter by passing
 ClientHelloOuterAAD as the associated data for HPKE sealing and
 opening operations. The ClientHelloOuterAAD is a serialized
 ClientHello structure, defined in Section 4.1.2 of [RFC8446], which
 matches the ClientHelloOuter except that the payload field of the
 "encrypted_client_hello" is replaced with a byte string of the same
 length but whose contents are zeros. This value does not include the
 four-byte header from the Handshake structure.

6. Client Behavior

 Clients that implement the ECH extension behave in one of two ways:
 either they offer a real ECH extension, as described in Section 6.1;
 or they send a GREASE ECH extension, as described in Section 6.2.
 Clients of the latter type do not negotiate ECH. Instead, they
 generate a dummy ECH extension that is ignored by the server. (See
 Section 10.10.4 for an explanation.) The client offers ECH if it is
 in possession of a compatible ECH configuration and sends GREASE ECH
 otherwise.

6.1. Offering ECH

 To offer ECH, the client first chooses a suitable ECHConfig from the
 server’s ECHConfigList. To determine if a given ECHConfig is
 suitable, it checks that it supports the KEM algorithm identified by
 ECHConfig.contents.kem_id, at least one KDF/AEAD algorithm identified
 by ECHConfig.contents.cipher_suites, and the version of ECH indicated
 by ECHConfig.contents.version. Once a suitable configuration is
 found, the client selects the cipher suite it will use for
 encryption. It MUST NOT choose a cipher suite or version not
 advertised by the configuration. If no compatible configuration is
 found, then the client SHOULD proceed as described in Section 6.2.

 Next, the client constructs the ClientHelloInner message just as it
 does a standard ClientHello, with the exception of the following
 rules:

 1. It MUST NOT offer to negotiate TLS 1.2 or below. This is
 necessary to ensure the backend server does not negotiate a TLS
 version that is incompatible with ECH.

 2. It MUST NOT offer to resume any session for TLS 1.2 and below.

Rescorla, et al. Expires 5 September 2024 [Page 15]

Internet-Draft TLS Encrypted Client Hello March 2024

 3. If it intends to compress any extensions (see Section 5.1), it
 MUST order those extensions consecutively.

 4. It MUST include the "encrypted_client_hello" extension of type
 inner as described in Section 5. (This requirement is not
 applicable when the "encrypted_client_hello" extension is
 generated as described in Section 6.2.)

 The client then constructs EncodedClientHelloInner as described in
 Section 5.1. It also computes an HPKE encryption context and enc
 value as:

 pkR = DeserializePublicKey(ECHConfig.contents.public_key)
 enc, context = SetupBaseS(pkR,
 "tls ech" || 0x00 || ECHConfig)

 Next, it constructs a partial ClientHelloOuterAAD as it does a
 standard ClientHello, with the exception of the following rules:

 1. It MUST offer to negotiate TLS 1.3 or above.

 2. If it compressed any extensions in EncodedClientHelloInner, it
 MUST copy the corresponding extensions from ClientHelloInner.
 The copied extensions additionally MUST be in the same relative
 order as in ClientHelloInner.

 3. It MUST copy the legacy_session_id field from ClientHelloInner.
 This allows the server to echo the correct session ID for TLS
 1.3’s compatibility mode (see Appendix D.4 of [RFC8446]) when ECH
 is negotiated.

 4. It MAY copy any other field from the ClientHelloInner except
 ClientHelloInner.random. Instead, It MUST generate a fresh
 ClientHelloOuter.random using a secure random number generator.
 (See Section 10.12.1.)

 5. It SHOULD place the value of ECHConfig.contents.public_name in
 the "server_name" extension. Clients that do not follow this
 step, or place a different value in the "server_name" extension,
 risk breaking the retry mechanism described in Section 6.1.6 or
 failing to interoperate with servers that require this step to be
 done; see Section 7.1.

 6. When the client offers the "pre_shared_key" extension in
 ClientHelloInner, it SHOULD also include a GREASE
 "pre_shared_key" extension in ClientHelloOuter, generated in the
 manner described in Section 6.1.2. The client MUST NOT use this
 extension to advertise a PSK to the client-facing server. (See

Rescorla, et al. Expires 5 September 2024 [Page 16]

Internet-Draft TLS Encrypted Client Hello March 2024

 Section 10.12.3.) When the client includes a GREASE
 "pre_shared_key" extension, it MUST also copy the
 "psk_key_exchange_modes" from the ClientHelloInner into the
 ClientHelloOuter.

 7. When the client offers the "early_data" extension in
 ClientHelloInner, it MUST also include the "early_data" extension
 in ClientHelloOuter. This allows servers that reject ECH and use
 ClientHelloOuter to safely ignore any early data sent by the
 client per [RFC8446], Section 4.2.10.

 Note that these rules may change in the presence of an application
 profile specifying otherwise.

 The client might duplicate non-sensitive extensions in both messages.
 However, implementations need to take care to ensure that sensitive
 extensions are not offered in the ClientHelloOuter. See Section 10.5
 for additional guidance.

 Finally, the client encrypts the EncodedClientHelloInner with the
 above values, as described in Section 6.1.1, to construct a
 ClientHelloOuter. It sends this to the server, and processes the
 response as described in Section 6.1.4.

6.1.1. Encrypting the ClientHello

 Given an EncodedClientHelloInner, an HPKE encryption context and enc
 value, and a partial ClientHelloOuterAAD, the client constructs a
 ClientHelloOuter as follows.

 First, the client determines the length L of encrypting
 EncodedClientHelloInner with the selected HPKE AEAD. This is
 typically the sum of the plaintext length and the AEAD tag length.
 The client then completes the ClientHelloOuterAAD with an
 "encrypted_client_hello" extension. This extension value contains
 the outer variant of ECHClientHello with the following fields:

 * config_id, the identifier corresponding to the chosen ECHConfig
 structure;

 * cipher_suite, the client’s chosen cipher suite;

 * enc, as given above; and

 * payload, a placeholder byte string containing L zeros.

Rescorla, et al. Expires 5 September 2024 [Page 17]

Internet-Draft TLS Encrypted Client Hello March 2024

 If configuration identifiers (see Section 10.4) are to be ignored,
 config_id SHOULD be set to a randomly generated byte in the first
 ClientHelloOuter and, in the event of HRR, MUST be left unchanged for
 the second ClientHelloOuter.

 The client serializes this structure to construct the
 ClientHelloOuterAAD. It then computes the final payload as:

 final_payload = context.Seal(ClientHelloOuterAAD,
 EncodedClientHelloInner)

 Including ClientHelloOuterAAD as the HPKE AAD binds the
 ClientHelloOuter to the ClientHelloInner, this preventing attackers
 from modifying ClientHelloOuter while keeping the same
 ClientHelloInner, as described in {#flow-clienthello-malleability}.

 Finally, the client replaces payload with final_payload to obtain
 ClientHelloOuter. The two values have the same length, so it is not
 necessary to recompute length prefixes in the serialized structure.

 Note this construction requires the "encrypted_client_hello" be
 computed after all other extensions. This is possible because the
 ClientHelloOuter’s "pre_shared_key" extension is either omitted, or
 uses a random binder (Section 6.1.2).

6.1.2. GREASE PSK

 When offering ECH, the client is not permitted to advertise PSK
 identities in the ClientHelloOuter. However, the client can send a
 "pre_shared_key" extension in the ClientHelloInner. In this case,
 when resuming a session with the client, the backend server sends a
 "pre_shared_key" extension in its ServerHello. This would appear to
 a network observer as if the server were sending this extension
 without solicitation, which would violate the extension rules
 described in [RFC8446]. When offering a PSK in ClientHelloInner,
 Clients SHOULD sending a GREASE "pre_shared_key" extension in the
 ClientHelloOuter to make it appear to the network as if the extension
 were negotiated properly.

 The client generates the extension payload by constructing an
 OfferedPsks structure (see [RFC8446], Section 4.2.11) as follows.
 For each PSK identity advertised in the ClientHelloInner, the client
 generates a random PSK identity with the same length. It also
 generates a random, 32-bit, unsigned integer to use as the
 obfuscated_ticket_age. Likewise, for each inner PSK binder, the
 client generates a random string of the same length.

Rescorla, et al. Expires 5 September 2024 [Page 18]

Internet-Draft TLS Encrypted Client Hello March 2024

 Per the rules of Section 6.1, the server is not permitted to resume a
 connection in the outer handshake. If ECH is rejected and the
 client-facing server replies with a "pre_shared_key" extension in its
 ServerHello, then the client MUST abort the handshake with an
 "illegal_parameter" alert.

6.1.3. Recommended Padding Scheme

 If the ClientHelloInner is encrypted without padding, then the length
 of the ClientHelloOuter.payload can leak information about
 ClientHelloInner. In order to prevent this the
 EncodedClientHelloInner structure has a padding field. This section
 describes a deterministic mechanism for computing the required amount
 of padding based on the following observation: individual extensions
 can reveal sensitive information through -their length. Thus, each
 extension in the inner ClientHello may require different amounts of
 padding. This padding may be fully determined by the client’s
 configuration or may require server input.

 By way of example, clients typically support a small number of
 application profiles. For instance, a browser might support HTTP
 with ALPN values ["http/1.1", "h2"] and WebRTC media with ALPNs
 ["webrtc", "c-webrtc"]. Clients SHOULD pad this extension by
 rounding up to the total size of the longest ALPN extension across
 all application profiles. The target padding length of most
 ClientHello extensions can be computed in this way.

 In contrast, clients do not know the longest SNI value in the client-
 facing server’s anonymity set without server input. Clients SHOULD
 use the ECHConfig’s maximum_name_length field as follows, where L is
 the maximum_name_length value.

 1. If the ClientHelloInner contained a "server_name" extension with
 a name of length D, add max(0, L - D) bytes of padding.

 2. If the ClientHelloInner did not contain a "server_name" extension
 (e.g., if the client is connecting to an IP address), add L + 9
 bytes of padding. This is the length of a "server_name"
 extension with an L-byte name.

 Finally, the client SHOULD pad the entire message as follows:

 1. Let L be the length of the EncodedClientHelloInner with all the
 padding computed so far.

 2. Let N = 31 - ((L - 1) % 32) and add N bytes of padding.

Rescorla, et al. Expires 5 September 2024 [Page 19]

Internet-Draft TLS Encrypted Client Hello March 2024

 This rounds the length of EncodedClientHelloInner up to a multiple of
 32 bytes, reducing the set of possible lengths across all clients.

 In addition to padding ClientHelloInner, clients and servers will
 also need to pad all other handshake messages that have sensitive-
 length fields. For example, if a client proposes ALPN values in
 ClientHelloInner, the server-selected value will be returned in an
 EncryptedExtension, so that handshake message also needs to be padded
 using TLS record layer padding.

6.1.4. Determining ECH Acceptance

 As described in Section 7, the server may either accept ECH and use
 ClientHelloInner or reject it and use ClientHelloOuter. This is
 determined by the server’s initial message.

 If the message does not negotiate TLS 1.3 or higher, the server has
 rejected ECH. Otherwise, it is either a ServerHello or
 HelloRetryRequest.

 If the message is a ServerHello, the client computes
 accept_confirmation as described in Section 7.2. If this value
 matches the last 8 bytes of ServerHello.random, the server has
 accepted ECH. Otherwise, it has rejected ECH.

 If the message is a HelloRetryRequest, the client checks for the
 "encrypted_client_hello" extension. If none is found, the server has
 rejected ECH. Otherwise, if it has a length other than 8, the client
 aborts the handshake with a "decode_error" alert. Otherwise, the
 client computes hrr_accept_confirmation as described in
 Section 7.2.1. If this value matches the extension payload, the
 server has accepted ECH. Otherwise, it has rejected ECH.

 [[OPEN ISSUE: Depending on what we do for issue#450, it may be
 appropriate to change the client behavior if the HRR extension is
 present but with the wrong value.]]

 If the server accepts ECH, the client handshakes with
 ClientHelloInner as described in Section 6.1.5. Otherwise, the
 client handshakes with ClientHelloOuter as described in
 Section 6.1.6.

6.1.5. Handshaking with ClientHelloInner

 If the server accepts ECH, the client proceeds with the connection as
 in [RFC8446], with the following modifications:

Rescorla, et al. Expires 5 September 2024 [Page 20]

Internet-Draft TLS Encrypted Client Hello March 2024

 The client behaves as if it had sent ClientHelloInner as the
 ClientHello. That is, it evaluates the handshake using the
 ClientHelloInner’s preferences, and, when computing the transcript
 hash (Section 4.4.1 of [RFC8446]), it uses ClientHelloInner as the
 first ClientHello.

 If the server responds with a HelloRetryRequest, the client computes
 the updated ClientHello message as follows:

 1. It computes a second ClientHelloInner based on the first
 ClientHelloInner, as in Section 4.1.4 of [RFC8446]. The
 ClientHelloInner’s "encrypted_client_hello" extension is left
 unmodified.

 2. It constructs EncodedClientHelloInner as described in
 Section 5.1.

 3. It constructs a second partial ClientHelloOuterAAD message. This
 message MUST be syntactically valid. The extensions MAY be
 copied from the original ClientHelloOuter unmodified, or omitted.
 If not sensitive, the client MAY copy updated extensions from the
 second ClientHelloInner for compression.

 4. It encrypts EncodedClientHelloInner as described in
 Section 6.1.1, using the second partial ClientHelloOuterAAD, to
 obtain a second ClientHelloOuter. It reuses the original HPKE
 encryption context computed in Section 6.1 and uses the empty
 string for enc.

 The HPKE context maintains a sequence number, so this operation
 internally uses a fresh nonce for each AEAD operation. Reusing
 the HPKE context avoids an attack described in Section 10.12.2.

 The client then sends the second ClientHelloOuter to the server.
 However, as above, it uses the second ClientHelloInner for
 preferences, and both the ClientHelloInner messages for the
 transcript hash. Additionally, it checks the resulting ServerHello
 for ECH acceptance as in Section 6.1.4. If the ServerHello does not
 also indicate ECH acceptance, the client MUST terminate the
 connection with an "illegal_parameter" alert.

Rescorla, et al. Expires 5 September 2024 [Page 21]

Internet-Draft TLS Encrypted Client Hello March 2024

6.1.6. Handshaking with ClientHelloOuter

 If the server rejects ECH, the client proceeds with the handshake,
 authenticating for ECHConfig.contents.public_name as described in
 Section 6.1.7. If authentication or the handshake fails, the client
 MUST return a failure to the calling application. It MUST NOT use
 the retry configurations. It MUST NOT treat this as a secure signal
 to disable ECH.

 If the server supplied an "encrypted_client_hello" extension in its
 EncryptedExtensions message, the client MUST check that it is
 syntactically valid and the client MUST abort the connection with a
 "decode_error" alert otherwise. If an earlier TLS version was
 negotiated, the client MUST NOT enable the False Start optimization
 [RFC7918] for this handshake. If both authentication and the
 handshake complete successfully, the client MUST perform the
 processing described below then abort the connection with an
 "ech_required" alert before sending any application data to the
 server.

 If the server provided "retry_configs" and if at least one of the
 values contains a version supported by the client, the client can
 regard the ECH keys as securely replaced by the server. It SHOULD
 retry the handshake with a new transport connection, using the retry
 configurations supplied by the server.

 Clients can implement a new transport connection in a way that best
 suits their deployment. For example, clients can reuse the same IP
 address when establishing the new transport connection or they can
 choose to use a different IP address if provided with options from
 DNS. ECH does not mandate any specific implementation choices when
 establishing this new connection.

 The retry configurations are meant to be used for retried
 connections. Further use of retry configurations could yield a
 tracking vector. In settings where the client will otherwise already
 let the server track the client, e.g., because the client will send
 cookies to the server in parallel connections, using the retry
 configurations for these parallel connections does not introduce a
 new tracking vector.

 If none of the values provided in "retry_configs" contains a
 supported version, the server did not supply an
 "encrypted_client_hello" extension in its EncryptedExtensions
 message, or an earlier TLS version was negotiated, the client can
 regard ECH as securely disabled by the server, and it SHOULD retry
 the handshake with a new transport connection and ECH disabled.

Rescorla, et al. Expires 5 September 2024 [Page 22]

Internet-Draft TLS Encrypted Client Hello March 2024

 Clients SHOULD implement a limit on retries caused by receipt of
 "retry_configs" or servers which do not acknowledge the
 "encrypted_client_hello" extension. If the client does not retry in
 either scenario, it MUST report an error to the calling application.

6.1.7. Authenticating for the Public Name

 When the server rejects ECH, it continues with the handshake using
 the plaintext "server_name" extension instead (see Section 7).
 Clients that offer ECH then authenticate the connection with the
 public name, as follows:

 * The client MUST verify that the certificate is valid for
 ECHConfig.contents.public_name. If invalid, it MUST abort the
 connection with the appropriate alert.

 * If the server requests a client certificate, the client MUST
 respond with an empty Certificate message, denoting no client
 certificate.

 In verifying the client-facing server certificate, the client MUST
 interpret the public name as a DNS-based reference identity. Clients
 that incorporate DNS names and IP addresses into the same syntax
 (e.g. [RFC3986], Section 7.4 and [WHATWG-IPV4]) MUST reject names
 that would be interpreted as IPv4 addresses. Clients that enforce
 this by checking ECHConfig.contents.public_name do not need to repeat
 the check at this layer.

 Note that authenticating a connection for the public name does not
 authenticate it for the origin. The TLS implementation MUST NOT
 report such connections as successful to the application. It
 additionally MUST ignore all session tickets and session IDs
 presented by the server. These connections are only used to trigger
 retries, as described in Section 6.1.6. This may be implemented, for
 instance, by reporting a failed connection with a dedicated error
 code.

6.2. GREASE ECH

 If the client attempts to connect to a server and does not have an
 ECHConfig structure available for the server, it SHOULD send a GREASE
 [RFC8701] "encrypted_client_hello" extension in the first ClientHello
 as follows:

 * Set the config_id field to a random byte.

Rescorla, et al. Expires 5 September 2024 [Page 23]

Internet-Draft TLS Encrypted Client Hello March 2024

 * Set the cipher_suite field to a supported
 HpkeSymmetricCipherSuite. The selection SHOULD vary to exercise
 all supported configurations, but MAY be held constant for
 successive connections to the same server in the same session.

 * Set the enc field to a randomly-generated valid encapsulated
 public key output by the HPKE KEM.

 * Set the payload field to a randomly-generated string of L+C bytes,
 where C is the ciphertext expansion of the selected AEAD scheme
 and L is the size of the EncodedClientHelloInner the client would
 compute when offering ECH, padded according to Section 6.1.3.

 If sending a second ClientHello in response to a HelloRetryRequest,
 the client copies the entire "encrypted_client_hello" extension from
 the first ClientHello. The identical value will reveal to an
 observer that the value of "encrypted_client_hello" was fake, but
 this only occurs if there is a HelloRetryRequest.

 If the server sends an "encrypted_client_hello" extension in either
 HelloRetryRequest or EncryptedExtensions, the client MUST check the
 extension syntactically and abort the connection with a
 "decode_error" alert if it is invalid. It otherwise ignores the
 extension. It MUST NOT save the "retry_configs" value in
 EncryptedExtensions.

 Offering a GREASE extension is not considered offering an encrypted
 ClientHello for purposes of requirements in Section 6.1. In
 particular, the client MAY offer to resume sessions established
 without ECH.

7. Server Behavior

 As described in {#topologies}, servers can play two roles, either as
 the client-facing server or as the back-end server. Depending on the
 server role, the ECHClientHello will be different:

 * A client-facing server expects a ECHClientHello.type of outer, and
 proceeds as described in Section 7.1 to extract a
 ClientHelloInner, if available.

 * A backend server expects a ECHClientHello.type of inner, and
 proceeds as described in Section 7.2.

Rescorla, et al. Expires 5 September 2024 [Page 24]

Internet-Draft TLS Encrypted Client Hello March 2024

 In split mode, a client-facing server which receives a ClientHello
 with ECHClientHello.type of inner MUST abort with an
 "illegal_parameter" alert. Similarly, in split mode, a backend
 server which receives a ClientHello with ECHClientHello.type of outer
 MUST abort with an "illegal_parameter" alert.

 In shared mode, a server plays both roles, first decrypting the
 ClientHelloOuter and then using the contents of the ClientHelloInner.
 A shared mode server which receives a ClientHello with
 ECHClientHello.type of outer MUST abort with an "illegal_parameter"
 alert, because such a ClientHello should never be received directly
 from the network.

 If ECHClientHello.type is not a valid ECHClientHelloType, then the
 server MUST abort with an "illegal_parameter" alert.

 If the "encrypted_client_hello" is not present, then the server
 completes the handshake normally, as described in [RFC8446].

7.1. Client-Facing Server

 Upon receiving an "encrypted_client_hello" extension in an initial
 ClientHello, the client-facing server determines if it will accept
 ECH, prior to negotiating any other TLS parameters. Note that
 successfully decrypting the extension will result in a new
 ClientHello to process, so even the client’s TLS version preferences
 may have changed.

 First, the server collects a set of candidate ECHConfig values. This
 list is determined by one of the two following methods:

 1. Compare ECHClientHello.config_id against identifiers of each
 known ECHConfig and select the ones that match, if any, as
 candidates.

 2. Collect all known ECHConfig values as candidates, with trial
 decryption below determining the final selection.

 Some uses of ECH, such as local discovery mode, may randomize the
 ECHClientHello.config_id since it can be used as a tracking vector.
 In such cases, the second method SHOULD be used for matching the
 ECHClientHello to a known ECHConfig. See Section 10.4. Unless
 specified by the application profile or otherwise externally
 configured, implementations MUST use the first method.

 The server then iterates over the candidate ECHConfig values,
 attempting to decrypt the "encrypted_client_hello" extension as
 follows.

Rescorla, et al. Expires 5 September 2024 [Page 25]

Internet-Draft TLS Encrypted Client Hello March 2024

 The server verifies that the ECHConfig supports the cipher suite
 indicated by the ECHClientHello.cipher_suite and that the version of
 ECH indicated by the client matches the ECHConfig.version. If not,
 the server continues to the next candidate ECHConfig.

 Next, the server decrypts ECHClientHello.payload, using the private
 key skR corresponding to ECHConfig, as follows:

 context = SetupBaseR(ECHClientHello.enc, skR,
 "tls ech" || 0x00 || ECHConfig)
 EncodedClientHelloInner = context.Open(ClientHelloOuterAAD,
 ECHClientHello.payload)

 ClientHelloOuterAAD is computed from ClientHelloOuter as described in
 Section 5.2. The info parameter to SetupBaseR is the concatenation
 "tls ech", a zero byte, and the serialized ECHConfig. If decryption
 fails, the server continues to the next candidate ECHConfig.
 Otherwise, the server reconstructs ClientHelloInner from
 EncodedClientHelloInner, as described in Section 5.1. It then stops
 iterating over the candidate ECHConfig values.

 Once the server has chosen the correct ECHConfig, it MAY verify that
 the value in the ClientHelloOuter "server_name" extension matches the
 value of ECHConfig.contents.public_name, and abort with an
 "illegal_parameter" alert if these do not match. This optional check
 allows the server to limit ECH connections to only use the public SNI
 values advertised in its ECHConfigs. The server MUST be careful not
 to unnecessarily reject connections if the same ECHConfig id or
 keypair is used in multiple ECHConfigs with distinct public names.

 Upon determining the ClientHelloInner, the client-facing server
 checks that the message includes a well-formed
 "encrypted_client_hello" extension of type inner and that it does not
 offer TLS 1.2 or below. If either of these checks fails, the client-
 facing server MUST abort with an "illegal_parameter" alert.

 If these checks succeed, the client-facing server then forwards the
 ClientHelloInner to the appropriate backend server, which proceeds as
 in Section 7.2. If the backend server responds with a
 HelloRetryRequest, the client-facing server forwards it, decrypts the
 client’s second ClientHelloOuter using the procedure in
 Section 7.1.1, and forwards the resulting second ClientHelloInner.
 The client-facing server forwards all other TLS messages between the
 client and backend server unmodified.

Rescorla, et al. Expires 5 September 2024 [Page 26]

Internet-Draft TLS Encrypted Client Hello March 2024

 Otherwise, if all candidate ECHConfig values fail to decrypt the
 extension, the client-facing server MUST ignore the extension and
 proceed with the connection using ClientHelloOuter, with the
 following modifications:

 * If sending a HelloRetryRequest, the server MAY include an
 "encrypted_client_hello" extension with a payload of 8 random
 bytes; see Section 10.10.4 for details.

 * If the server is configured with any ECHConfigs, it MUST include
 the "encrypted_client_hello" extension in its EncryptedExtensions
 with the "retry_configs" field set to one or more ECHConfig
 structures with up-to-date keys. Servers MAY supply multiple
 ECHConfig values of different versions. This allows a server to
 support multiple versions at once.

 Note that decryption failure could indicate a GREASE ECH extension
 (see Section 6.2), so it is necessary for servers to proceed with the
 connection and rely on the client to abort if ECH was required. In
 particular, the unrecognized value alone does not indicate a
 misconfigured ECH advertisement (Section 8.1.1). Instead, servers
 can measure occurrences of the "ech_required" alert to detect this
 case.

7.1.1. Sending HelloRetryRequest

 After sending or forwarding a HelloRetryRequest, the client-facing
 server does not repeat the steps in Section 7.1 with the second
 ClientHelloOuter. Instead, it continues with the ECHConfig selection
 from the first ClientHelloOuter as follows:

 If the client-facing server accepted ECH, it checks the second
 ClientHelloOuter also contains the "encrypted_client_hello"
 extension. If not, it MUST abort the handshake with a
 "missing_extension" alert. Otherwise, it checks that
 ECHClientHello.cipher_suite and ECHClientHello.config_id are
 unchanged, and that ECHClientHello.enc is empty. If not, it MUST
 abort the handshake with an "illegal_parameter" alert.

 Finally, it decrypts the new ECHClientHello.payload as a second
 message with the previous HPKE context:

 EncodedClientHelloInner = context.Open(ClientHelloOuterAAD,
 ECHClientHello.payload)

 ClientHelloOuterAAD is computed as described in Section 5.2, but
 using the second ClientHelloOuter. If decryption fails, the client-
 facing server MUST abort the handshake with a "decrypt_error" alert.

Rescorla, et al. Expires 5 September 2024 [Page 27]

Internet-Draft TLS Encrypted Client Hello March 2024

 Otherwise, it reconstructs the second ClientHelloInner from the new
 EncodedClientHelloInner as described in Section 5.1, using the second
 ClientHelloOuter for any referenced extensions.

 The client-facing server then forwards the resulting ClientHelloInner
 to the backend server. It forwards all subsequent TLS messages
 between the client and backend server unmodified.

 If the client-facing server rejected ECH, or if the first ClientHello
 did not include an "encrypted_client_hello" extension, the client-
 facing server proceeds with the connection as usual. The server does
 not decrypt the second ClientHello’s ECHClientHello.payload value, if
 there is one. Moreover, if the server is configured with any
 ECHConfigs, it MUST include the "encrypted_client_hello" extension in
 its EncryptedExtensions with the "retry_configs" field set to one or
 more ECHConfig structures with up-to-date keys, as described in
 Section 7.1.

 Note that a client-facing server that forwards the first ClientHello
 cannot include its own "cookie" extension if the backend server sends
 a HelloRetryRequest. This means that the client-facing server either
 needs to maintain state for such a connection or it needs to
 coordinate with the backend server to include any information it
 requires to process the second ClientHello.

7.2. Backend Server

 Upon receipt of an "encrypted_client_hello" extension of type inner
 in a ClientHello, if the backend server negotiates TLS 1.3 or higher,
 then it MUST confirm ECH acceptance to the client by computing its
 ServerHello as described here.

 The backend server embeds in ServerHello.random a string derived from
 the inner handshake. It begins by computing its ServerHello as
 usual, except the last 8 bytes of ServerHello.random are set to zero.
 It then computes the transcript hash for ClientHelloInner up to and
 including the modified ServerHello, as described in [RFC8446],
 Section 4.4.1. Let transcript_ech_conf denote the output. Finally,
 the backend server overwrites the last 8 bytes of the
 ServerHello.random with the following string:

 accept_confirmation = HKDF-Expand-Label(
 HKDF-Extract(0, ClientHelloInner.random),
 "ech accept confirmation",
 transcript_ech_conf,
 8)

Rescorla, et al. Expires 5 September 2024 [Page 28]

Internet-Draft TLS Encrypted Client Hello March 2024

 where HKDF-Expand-Label is defined in [RFC8446], Section 7.1, "0"
 indicates a string of Hash.length bytes set to zero, and Hash is the
 hash function used to compute the transcript hash.

 The backend server MUST NOT perform this operation if it negotiated
 TLS 1.2 or below. Note that doing so would overwrite the downgrade
 signal for TLS 1.3 (see [RFC8446], Section 4.1.3).

7.2.1. Sending HelloRetryRequest

 When the backend server sends HelloRetryRequest in response to the
 ClientHello, it similarly confirms ECH acceptance by adding a
 confirmation signal to its HelloRetryRequest. But instead of
 embedding the signal in the HelloRetryRequest.random (the value of
 which is specified by [RFC8446]), it sends the signal in an
 extension.

 The backend server begins by computing HelloRetryRequest as usual,
 except that it also contains an "encrypted_client_hello" extension
 with a payload of 8 zero bytes. It then computes the transcript hash
 for the first ClientHelloInner, denoted ClientHelloInner1, up to and
 including the modified HelloRetryRequest. Let
 transcript_hrr_ech_conf denote the output. Finally, the backend
 server overwrites the payload of the "encrypted_client_hello"
 extension with the following string:

 hrr_accept_confirmation = HKDF-Expand-Label(
 HKDF-Extract(0, ClientHelloInner1.random),
 "hrr ech accept confirmation",
 transcript_hrr_ech_conf,
 8)

 In the subsequent ServerHello message, the backend server sends the
 accept_confirmation value as described in Section 7.2.

8. Deployment Considerations

 The design of ECH as specified in this document necessarily requires
 changes to client, client-facing server, and backend server.
 Coordination between client-facing and backend server requires care,
 as deployment mistakes can lead to compatibility issues. These are
 discussed in Section 8.1.

 Beyond coordination difficulties, ECH deployments may also induce
 challenges for use cases of information that ECH protects. In
 particular, use cases which depend on this unencrypted information
 may no longer work as desired. This is elaborated upon in
 Section 8.2.

Rescorla, et al. Expires 5 September 2024 [Page 29]

Internet-Draft TLS Encrypted Client Hello March 2024

8.1. Compatibility Issues

 Unlike most TLS extensions, placing the SNI value in an ECH extension
 is not interoperable with existing servers, which expect the value in
 the existing plaintext extension. Thus server operators SHOULD
 ensure servers understand a given set of ECH keys before advertising
 them. Additionally, servers SHOULD retain support for any
 previously-advertised keys for the duration of their validity.

 However, in more complex deployment scenarios, this may be difficult
 to fully guarantee. Thus this protocol was designed to be robust in
 case of inconsistencies between systems that advertise ECH keys and
 servers, at the cost of extra round-trips due to a retry. Two
 specific scenarios are detailed below.

8.1.1. Misconfiguration and Deployment Concerns

 It is possible for ECH advertisements and servers to become
 inconsistent. This may occur, for instance, from DNS
 misconfiguration, caching issues, or an incomplete rollout in a
 multi-server deployment. This may also occur if a server loses its
 ECH keys, or if a deployment of ECH must be rolled back on the
 server.

 The retry mechanism repairs inconsistencies, provided the server is
 authoritative for the public name. If server and advertised keys
 mismatch, the server will reject ECH and respond with
 "retry_configs". If the server does not understand the
 "encrypted_client_hello" extension at all, it will ignore it as
 required by Section 4.1.2 of [RFC8446]. Provided the server can
 present a certificate valid for the public name, the client can
 safely retry with updated settings, as described in Section 6.1.6.

 Unless ECH is disabled as a result of successfully establishing a
 connection to the public name, the client MUST NOT fall back to using
 unencrypted ClientHellos, as this allows a network attacker to
 disclose the contents of this ClientHello, including the SNI. It MAY
 attempt to use another server from the DNS results, if one is
 provided.

 In order to ensure that the retry mechanism works successfully
 servers SHOULD ensure that every endpoint which might receive a TLS
 connection is provisioned with an appropriate certificate for the
 public name. This is especially important during periods of server
 reconfiguration when different endpoints might have different
 configurations.

Rescorla, et al. Expires 5 September 2024 [Page 30]

Internet-Draft TLS Encrypted Client Hello March 2024

8.1.2. Middleboxes

 The requirements in [RFC8446], Section 9.3 which require proxies to
 act as conforming TLS client and server provide interoperability with
 TLS-terminating proxies even in cases where the server supports ECH
 but the proxy does not, as detailed below.

 The proxy must ignore unknown parameters, and generate its own
 ClientHello containing only parameters it understands. Thus, when
 presenting a certificate to the client or sending a ClientHello to
 the server, the proxy will act as if connecting to the
 ClientHelloOuter server_name, which SHOULD match the public name (see
 Section 6.1), without echoing the "encrypted_client_hello" extension.

 Depending on whether the client is configured to accept the proxy’s
 certificate as authoritative for the public name, this may trigger
 the retry logic described in Section 6.1.6 or result in a connection
 failure. A proxy which is not authoritative for the public name
 cannot forge a signal to disable ECH.

8.2. Deployment Impact

 Some use cases which depend on information ECH encrypts may break
 with the deployment of ECH. The extent of breakage depends on a
 number of external factors, including, for example, whether ECH can
 be disabled, whether or not the party disabling ECH is trusted to do
 so, and whether or not client implementations will fall back to TLS
 without ECH in the event of disablement.

 Depending on implementation details and deployment settings, use
 cases which depend on plaintext TLS information may require
 fundamentally different approaches to continue working. For example,
 in managed enterprise settings, one approach may be to disable ECH
 entirely via group policy and for client implementations to honor
 this action.

 In the context of Section 6.1.6, another approach may be to intercept
 and decrypt client TLS connections. The feasibility of alternative
 solutions is specific to individual deployments.

9. Compliance Requirements

 In the absence of an application profile standard specifying
 otherwise, a compliant ECH application MUST implement the following
 HPKE cipher suite:

 * KEM: DHKEM(X25519, HKDF-SHA256) (see Section 7.1 of [HPKE])

Rescorla, et al. Expires 5 September 2024 [Page 31]

Internet-Draft TLS Encrypted Client Hello March 2024

 * KDF: HKDF-SHA256 (see Section 7.2 of [HPKE])

 * AEAD: AES-128-GCM (see Section 7.3 of [HPKE])

10. Security Considerations

 This section contains security considerations for ECH.

10.1. Security and Privacy Goals

 ECH considers two types of attackers: passive and active. Passive
 attackers can read packets from the network, but they cannot perform
 any sort of active behavior such as probing servers or querying DNS.
 A middlebox that filters based on plaintext packet contents is one
 example of a passive attacker. In contrast, active attackers can
 also write packets into the network for malicious purposes, such as
 interfering with existing connections, probing servers, and querying
 DNS. In short, an active attacker corresponds to the conventional
 threat model for TLS 1.3 [RFC8446].

 Passive and active attackers can exist anywhere in the network,
 including between the client and client-facing server, as well as
 between the client-facing and backend servers when running ECH in
 Split Mode. However, for Split Mode in particular, ECH makes two
 additional assumptions:

 1. The channel between each client-facing and each backend server is
 authenticated such that the backend server only accepts messages
 from trusted client-facing servers. The exact mechanism for
 establishing this authenticated channel is out of scope for this
 document.

 2. The attacker cannot correlate messages between client and client-
 facing server with messages between client-facing and backend
 server. Such correlation could allow an attacker to link
 information unique to a backend server, such as their server name
 or IP address, with a client’s encrypted ClientHelloInner.
 Correlation could occur through timing analysis of messages
 across the client-facing server, or via examining the contents of
 messages sent between client-facing and backend servers. The
 exact mechanism for preventing this sort of correlation is out of
 scope for this document.

 Given this threat model, the primary goals of ECH are as follows.

 1. Security preservation. Use of ECH does not weaken the security
 properties of TLS without ECH.

Rescorla, et al. Expires 5 September 2024 [Page 32]

Internet-Draft TLS Encrypted Client Hello March 2024

 2. Handshake privacy. TLS connection establishment to a host within
 an anonymity set is indistinguishable from a connection to any
 other host within the anonymity set. (The anonymity set is
 defined in Section 1.)

 3. Downgrade resistance. An attacker cannot downgrade a connection
 that attempts to use ECH to one that does not use ECH.

 These properties were formally proven in [ECH-Analysis].

 With regards to handshake privacy, client-facing server configuration
 determines the size of the anonymity set. For example, if a client-
 facing server uses distinct ECHConfig values for each host, then each
 anonymity set has size k = 1. Client-facing servers SHOULD deploy
 ECH in such a way so as to maximize the size of the anonymity set
 where possible. This means client-facing servers should use the same
 ECHConfig for as many hosts as possible. An attacker can distinguish
 two hosts that have different ECHConfig values based on the
 ECHClientHello.config_id value. This also means public information
 in a TLS handshake should be consistent across hosts. For example,
 if a client-facing server services many backend origin hosts, only
 one of which supports some cipher suite, it may be possible to
 identify that host based on the contents of unencrypted handshake
 messages.

 Beyond these primary security and privacy goals, ECH also aims to
 hide, to some extent, the fact that it is being used at all.
 Specifically, the GREASE ECH extension described in Section 6.2 does
 not change the security properties of the TLS handshake at all. Its
 goal is to provide "cover" for the real ECH protocol (Section 6.1),
 as a means of addressing the "do not stick out" requirements of
 [RFC8744]. See Section 10.10.4 for details.

10.2. Unauthenticated and Plaintext DNS

 In comparison to [I-D.kazuho-protected-sni], wherein DNS Resource
 Records are signed via a server private key, ECH records have no
 authenticity or provenance information. This means that any attacker
 which can inject DNS responses or poison DNS caches, which is a
 common scenario in client access networks, can supply clients with
 fake ECH records (so that the client encrypts data to them) or strip
 the ECH record from the response. However, in the face of an
 attacker that controls DNS, no encryption scheme can work because the
 attacker can replace the IP address, thus blocking client
 connections, or substitute a unique IP address which is 1:1 with the
 DNS name that was looked up (modulo DNS wildcards). Thus, allowing
 the ECH records in the clear does not make the situation
 significantly worse.

Rescorla, et al. Expires 5 September 2024 [Page 33]

Internet-Draft TLS Encrypted Client Hello March 2024

 Clearly, DNSSEC (if the client validates and hard fails) is a defense
 against this form of attack, but DoH/DPRIVE are also defenses against
 DNS attacks by attackers on the local network, which is a common case
 where ClientHello and SNI encryption are desired. Moreover, as noted
 in the introduction, SNI encryption is less useful without encryption
 of DNS queries in transit via DoH or DPRIVE mechanisms.

10.3. Client Tracking

 A malicious client-facing server could distribute unique, per-client
 ECHConfig structures as a way of tracking clients across subsequent
 connections. On-path adversaries which know about these unique keys
 could also track clients in this way by observing TLS connection
 attempts.

 The cost of this type of attack scales linearly with the desired
 number of target clients. Moreover, DNS caching behavior makes
 targeting individual users for extended periods of time, e.g., using
 per-client ECHConfig structures delivered via HTTPS RRs with high
 TTLs, challenging. Clients can help mitigate this problem by
 flushing any DNS or ECHConfig state upon changing networks.

10.4. Ignored Configuration Identifiers and Trial Decryption

 Ignoring configuration identifiers may be useful in scenarios where
 clients and client-facing servers do not want to reveal information
 about the client-facing server in the "encrypted_client_hello"
 extension. In such settings, clients send a randomly generated
 config_id in the ECHClientHello. Servers in these settings must
 perform trial decryption since they cannot identify the client’s
 chosen ECH key using the config_id value. As a result, ignoring
 configuration identifiers may exacerbate DoS attacks. Specifically,
 an adversary may send malicious ClientHello messages, i.e., those
 which will not decrypt with any known ECH key, in order to force
 wasteful decryption. Servers that support this feature should, for
 example, implement some form of rate limiting mechanism to limit the
 potential damage caused by such attacks.

 Unless specified by the application using (D)TLS or externally
 configured, implementations MUST NOT use this mode.

10.5. Outer ClientHello

 Any information that the client includes in the ClientHelloOuter is
 visible to passive observers. The client SHOULD NOT send values in
 the ClientHelloOuter which would reveal a sensitive ClientHelloInner
 property, such as the true server name. It MAY send values
 associated with the public name in the ClientHelloOuter.

Rescorla, et al. Expires 5 September 2024 [Page 34]

Internet-Draft TLS Encrypted Client Hello March 2024

 In particular, some extensions require the client send a server-name-
 specific value in the ClientHello. These values may reveal
 information about the true server name. For example, the
 "cached_info" ClientHello extension [RFC7924] can contain the hash of
 a previously observed server certificate. The client SHOULD NOT send
 values associated with the true server name in the ClientHelloOuter.
 It MAY send such values in the ClientHelloInner.

 A client may also use different preferences in different contexts.
 For example, it may send a different ALPN lists to different servers
 or in different application contexts. A client that treats this
 context as sensitive SHOULD NOT send context-specific values in
 ClientHelloOuter.

 Values which are independent of the true server name, or other
 information the client wishes to protect, MAY be included in
 ClientHelloOuter. If they match the corresponding ClientHelloInner,
 they MAY be compressed as described in Section 5.1. However, note
 that the payload length reveals information about which extensions
 are compressed, so inner extensions which only sometimes match the
 corresponding outer extension SHOULD NOT be compressed.

 Clients MAY include additional extensions in ClientHelloOuter to
 avoid signaling unusual behavior to passive observers, provided the
 choice of value and value itself are not sensitive. See
 Section 10.10.4.

10.6. Inner ClientHello

 Values which depend on the contents of ClientHelloInner, such as the
 true server name, can influence how client-facing servers process
 this message. In particular, timing side channels can reveal
 information about the contents of ClientHelloInner. Implementations
 should take such side channels into consideration when reasoning
 about the privacy properties that ECH provides.

10.7. Related Privacy Leaks

 ECH requires encrypted DNS to be an effective privacy protection
 mechanism. However, verifying the server’s identity from the
 Certificate message, particularly when using the X509
 CertificateType, may result in additional network traffic that may
 reveal the server identity. Examples of this traffic may include
 requests for revocation information, such as OCSP or CRL traffic, or
 requests for repository information, such as
 authorityInformationAccess. It may also include implementation-
 specific traffic for additional information sources as part of
 verification.

Rescorla, et al. Expires 5 September 2024 [Page 35]

Internet-Draft TLS Encrypted Client Hello March 2024

 Implementations SHOULD avoid leaking information that may identify
 the server. Even when sent over an encrypted transport, such
 requests may result in indirect exposure of the server’s identity,
 such as indicating a specific CA or service being used. To mitigate
 this risk, servers SHOULD deliver such information in-band when
 possible, such as through the use of OCSP stapling, and clients
 SHOULD take steps to minimize or protect such requests during
 certificate validation.

 Attacks that rely on non-ECH traffic to infer server identity in an
 ECH connection are out of scope for this document. For example, a
 client that connects to a particular host prior to ECH deployment may
 later resume a connection to that same host after ECH deployment. An
 adversary that observes this can deduce that the ECH-enabled
 connection was made to a host that the client previously connected to
 and which is within the same anonymity set.

10.8. Cookies

 Section 4.2.2 of [RFC8446] defines a cookie value that servers may
 send in HelloRetryRequest for clients to echo in the second
 ClientHello. While ECH encrypts the cookie in the second
 ClientHelloInner, the backend server’s HelloRetryRequest is
 unencrypted.This means differences in cookies between backend
 servers, such as lengths or cleartext components, may leak
 information about the server identity.

 Backend servers in an anonymity set SHOULD NOT reveal information in
 the cookie which identifies the server. This may be done by handling
 HelloRetryRequest statefully, thus not sending cookies, or by using
 the same cookie construction for all backend servers.

 Note that, if the cookie includes a key name, analogous to Section 4
 of [RFC5077], this may leak information if different backend servers
 issue cookies with different key names at the time of the connection.
 In particular, if the deployment operates in Split Mode, the backend
 servers may not share cookie encryption keys. Backend servers may
 mitigate this by either handling key rotation with trial decryption,
 or coordinating to match key names.

10.9. Attacks Exploiting Acceptance Confirmation

 To signal acceptance, the backend server overwrites 8 bytes of its
 ServerHello.random with a value derived from the
 ClientHelloInner.random. (See Section 7.2 for details.) This
 behavior increases the likelihood of the ServerHello.random colliding
 with the ServerHello.random of a previous session, potentially
 reducing the overall security of the protocol. However, the

Rescorla, et al. Expires 5 September 2024 [Page 36]

Internet-Draft TLS Encrypted Client Hello March 2024

 remaining 24 bytes provide enough entropy to ensure this is not a
 practical avenue of attack.

 On the other hand, the probability that two 8-byte strings are the
 same is non-negligible. This poses a modest operational risk.
 Suppose the client-facing server terminates the connection (i.e., ECH
 is rejected or bypassed): if the last 8 bytes of its
 ServerHello.random coincide with the confirmation signal, then the
 client will incorrectly presume acceptance and proceed as if the
 backend server terminated the connection. However, the probability
 of a false positive occurring for a given connection is only 1 in
 2^64. This value is smaller than the probability of network
 connection failures in practice.

 Note that the same bytes of the ServerHello.random are used to
 implement downgrade protection for TLS 1.3 (see [RFC8446],
 Section 4.1.3). These mechanisms do not interfere because the
 backend server only signals ECH acceptance in TLS 1.3 or higher.

10.10. Comparison Against Criteria

 [RFC8744] lists several requirements for SNI encryption. In this
 section, we re-iterate these requirements and assess the ECH design
 against them.

10.10.1. Mitigate Cut-and-Paste Attacks

 Since servers process either ClientHelloInner or ClientHelloOuter,
 and because ClientHelloInner.random is encrypted, it is not possible
 for an attacker to "cut and paste" the ECH value in a different
 Client Hello and learn information from ClientHelloInner.

10.10.2. Avoid Widely Shared Secrets

 This design depends upon DNS as a vehicle for semi-static public key
 distribution. Server operators may partition their private keys
 however they see fit provided each server behind an IP address has
 the corresponding private key to decrypt a key. Thus, when one ECH
 key is provided, sharing is optimally bound by the number of hosts
 that share an IP address. Server operators may further limit sharing
 by publishing different DNS records containing ECHConfig values with
 different keys using a short TTL.

Rescorla, et al. Expires 5 September 2024 [Page 37]

Internet-Draft TLS Encrypted Client Hello March 2024

10.10.3. Prevent SNI-Based Denial-of-Service Attacks

 This design requires servers to decrypt ClientHello messages with
 ECHClientHello extensions carrying valid digests. Thus, it is
 possible for an attacker to force decryption operations on the
 server. This attack is bound by the number of valid transport
 connections an attacker can open.

10.10.4. Do Not Stick Out

 As a means of reducing the impact of network ossification, [RFC8744]
 recommends SNI-protection mechanisms be designed in such a way that
 network operators do not differentiate connections using the
 mechanism from connections not using the mechanism. To that end, ECH
 is designed to resemble a standard TLS handshake as much as possible.
 The most obvious difference is the extension itself: as long as
 middleboxes ignore it, as required by [RFC8446], the rest of the
 handshake is designed to look very much as usual.

 The GREASE ECH protocol described in Section 6.2 provides a low-risk
 way to evaluate the deployability of ECH. It is designed to mimic
 the real ECH protocol (Section 6.1) without changing the security
 properties of the handshake. The underlying theory is that if GREASE
 ECH is deployable without triggering middlebox misbehavior, and real
 ECH looks enough like GREASE ECH, then ECH should be deployable as
 well. Thus, our strategy for mitigating network ossification is to
 deploy GREASE ECH widely enough to disincentivize differential
 treatment of the real ECH protocol by the network.

 Ensuring that networks do not differentiate between real ECH and
 GREASE ECH may not be feasible for all implementations. While most
 middleboxes will not treat them differently, some operators may wish
 to block real ECH usage but allow GREASE ECH. This specification
 aims to provide a baseline security level that most deployments can
 achieve easily, while providing implementations enough flexibility to
 achieve stronger security where possible. Minimally, real ECH is
 designed to be indifferentiable from GREASE ECH for passive
 adversaries with following capabilities:

 1. The attacker does not know the ECHConfigList used by the server.

 2. The attacker keeps per-connection state only. In particular, it
 does not track endpoints across connections.

 Moreover, real ECH and GREASE ECH are designed so that the following
 features do not noticeably vary to the attacker, i.e., they are not
 distinguishers:

Rescorla, et al. Expires 5 September 2024 [Page 38]

Internet-Draft TLS Encrypted Client Hello March 2024

 1. the code points of extensions negotiated in the clear, and their
 order;

 2. the length of messages; and

 3. the values of plaintext alert messages.

 This leaves a variety of practical differentiators out-of-scope.
 including, though not limited to, the following:

 1. the value of the configuration identifier;

 2. the value of the outer SNI;

 3. the TLS version negotiated, which may depend on ECH acceptance;

 4. client authentication, which may depend on ECH acceptance; and

 5. HRR issuance, which may depend on ECH acceptance.

 These can be addressed with more sophisticated implementations, but
 some mitigations require coordination between the client and server,
 and even across different client and server implementations. These
 mitigations are out-of-scope for this specification.

10.10.5. Maintain Forward Secrecy

 This design is not forward secret because the server’s ECH key is
 static. However, the window of exposure is bound by the key
 lifetime. It is RECOMMENDED that servers rotate keys frequently.

10.10.6. Enable Multi-party Security Contexts

 This design permits servers operating in Split Mode to forward
 connections directly to backend origin servers. The client
 authenticates the identity of the backend origin server, thereby
 avoiding unnecessary MiTM attacks.

 Conversely, assuming ECH records retrieved from DNS are
 authenticated, e.g., via DNSSEC or fetched from a trusted Recursive
 Resolver, spoofing a client-facing server operating in Split Mode is
 not possible. See Section 10.2 for more details regarding plaintext
 DNS.

 Authenticating the ECHConfig structure naturally authenticates the
 included public name. This also authenticates any retry signals from
 the client-facing server because the client validates the server
 certificate against the public name before retrying.

Rescorla, et al. Expires 5 September 2024 [Page 39]

Internet-Draft TLS Encrypted Client Hello March 2024

10.10.7. Support Multiple Protocols

 This design has no impact on application layer protocol negotiation.
 It may affect connection routing, server certificate selection, and
 client certificate verification. Thus, it is compatible with
 multiple application and transport protocols. By encrypting the
 entire ClientHello, this design additionally supports encrypting the
 ALPN extension.

10.11. Padding Policy

 Variations in the length of the ClientHelloInner ciphertext could
 leak information about the corresponding plaintext. Section 6.1.3
 describes a RECOMMENDED padding mechanism for clients aimed at
 reducing potential information leakage.

10.12. Active Attack Mitigations

 This section describes the rationale for ECH properties and mechanics
 as defenses against active attacks. In all the attacks below, the
 attacker is on-path between the target client and server. The goal
 of the attacker is to learn private information about the inner
 ClientHello, such as the true SNI value.

10.12.1. Client Reaction Attack Mitigation

 This attack uses the client’s reaction to an incorrect certificate as
 an oracle. The attacker intercepts a legitimate ClientHello and
 replies with a ServerHello, Certificate, CertificateVerify, and
 Finished messages, wherein the Certificate message contains a "test"
 certificate for the domain name it wishes to query. If the client
 decrypted the Certificate and failed verification (or leaked
 information about its verification process by a timing side channel),
 the attacker learns that its test certificate name was incorrect. As
 an example, suppose the client’s SNI value in its inner ClientHello
 is "example.com," and the attacker replied with a Certificate for
 "test.com". If the client produces a verification failure alert
 because of the mismatch faster than it would due to the Certificate
 signature validation, information about the name leaks. Note that
 the attacker can also withhold the CertificateVerify message. In
 that scenario, a client which first verifies the Certificate would
 then respond similarly and leak the same information.

Rescorla, et al. Expires 5 September 2024 [Page 40]

Internet-Draft TLS Encrypted Client Hello March 2024

 Client Attacker Server
 ClientHello
 + key_share
 + ech ------> (intercept) -----> X (drop)

 ServerHello
 + key_share
 {EncryptedExtensions}
 {CertificateRequest*}
 {Certificate*}
 {CertificateVerify*}
 <------
 Alert
 ------>

 Figure 3: Client reaction attack

 ClientHelloInner.random prevents this attack. In particular, since
 the attacker does not have access to this value, it cannot produce
 the right transcript and handshake keys needed for encrypting the
 Certificate message. Thus, the client will fail to decrypt the
 Certificate and abort the connection.

10.12.2. HelloRetryRequest Hijack Mitigation

 This attack aims to exploit server HRR state management to recover
 information about a legitimate ClientHello using its own attacker-
 controlled ClientHello. To begin, the attacker intercepts and
 forwards a legitimate ClientHello with an "encrypted_client_hello"
 (ech) extension to the server, which triggers a legitimate
 HelloRetryRequest in return. Rather than forward the retry to the
 client, the attacker attempts to generate its own ClientHello in
 response based on the contents of the first ClientHello and
 HelloRetryRequest exchange with the result that the server encrypts
 the Certificate to the attacker. If the server used the SNI from the
 first ClientHello and the key share from the second (attacker-
 controlled) ClientHello, the Certificate produced would leak the
 client’s chosen SNI to the attacker.

Rescorla, et al. Expires 5 September 2024 [Page 41]

Internet-Draft TLS Encrypted Client Hello March 2024

 Client Attacker Server
 ClientHello
 + key_share
 + ech ------> (forward) ------->
 HelloRetryRequest
 + key_share
 (intercept) <-------

 ClientHello
 + key_share’
 + ech’ ------->
 ServerHello
 + key_share
 {EncryptedExtensions}
 {CertificateRequest*}
 {Certificate*}
 {CertificateVerify*}
 {Finished}
 <-------
 (process server flight)

 Figure 4: HelloRetryRequest hijack attack

 This attack is mitigated by using the same HPKE context for both
 ClientHello messages. The attacker does not possess the context’s
 keys, so it cannot generate a valid encryption of the second inner
 ClientHello.

 If the attacker could manipulate the second ClientHello, it might be
 possible for the server to act as an oracle if it required parameters
 from the first ClientHello to match that of the second ClientHello.
 For example, imagine the client’s original SNI value in the inner
 ClientHello is "example.com", and the attacker’s hijacked SNI value
 in its inner ClientHello is "test.com". A server which checks these
 for equality and changes behavior based on the result can be used as
 an oracle to learn the client’s SNI.

10.12.3. ClientHello Malleability Mitigation

 This attack aims to leak information about secret parts of the
 encrypted ClientHello by adding attacker-controlled parameters and
 observing the server’s response. In particular, the compression
 mechanism described in Section 5.1 references parts of a potentially
 attacker-controlled ClientHelloOuter to construct ClientHelloInner,
 or a buggy server may incorrectly apply parameters from
 ClientHelloOuter to the handshake.

Rescorla, et al. Expires 5 September 2024 [Page 42]

Internet-Draft TLS Encrypted Client Hello March 2024

 To begin, the attacker first interacts with a server to obtain a
 resumption ticket for a given test domain, such as "example.com".
 Later, upon receipt of a ClientHelloOuter, it modifies it such that
 the server will process the resumption ticket with ClientHelloInner.
 If the server only accepts resumption PSKs that match the server
 name, it will fail the PSK binder check with an alert when
 ClientHelloInner is for "example.com" but silently ignore the PSK and
 continue when ClientHelloInner is for any other name. This
 introduces an oracle for testing encrypted SNI values.

 Client Attacker Server

 handshake and ticket
 for "example.com"
 <-------->

 ClientHello
 + key_share
 + ech
 + ech_outer_extensions(pre_shared_key)
 + pre_shared_key
 -------->
 (intercept)
 ClientHello
 + key_share
 + ech
 + ech_outer_extensions(pre_shared_key)
 + pre_shared_key’
 -------->
 Alert
 -or-
 ServerHello
 ...
 Finished
 <--------

 Figure 5: Message flow for malleable ClientHello

 This attack may be generalized to any parameter which the server
 varies by server name, such as ALPN preferences.

 ECH mitigates this attack by only negotiating TLS parameters from
 ClientHelloInner and authenticating all inputs to the
 ClientHelloInner (EncodedClientHelloInner and ClientHelloOuter) with
 the HPKE AEAD. See Section 5.2. The decompression process in
 Section 5.1 forbids "encrypted_client_hello" in OuterExtensions.
 This ensures the unauthenticated portion of ClientHelloOuter is not
 incorporated into ClientHelloInner. An earlier iteration of this

Rescorla, et al. Expires 5 September 2024 [Page 43]

Internet-Draft TLS Encrypted Client Hello March 2024

 specification only encrypted and authenticated the "server_name"
 extension, which left the overall ClientHello vulnerable to an
 analogue of this attack.

10.12.4. ClientHelloInner Packet Amplification Mitigation

 Client-facing servers must decompress EncodedClientHelloInners. A
 malicious attacker may craft a packet which takes excessive resources
 to decompress or may be much larger than the incoming packet:

 * If looking up a ClientHelloOuter extension takes time linear in
 the number of extensions, the overall decoding process would take
 O(M*N) time, where M is the number of extensions in
 ClientHelloOuter and N is the size of OuterExtensions.

 * If the same ClientHelloOuter extension can be copied multiple
 times, an attacker could cause the client-facing server to
 construct a large ClientHelloInner by including a large extension
 in ClientHelloOuter, of length L, and an OuterExtensions list
 referencing N copies of that extension. The client-facing server
 would then use O(N*L) memory in response to O(N+L) bandwidth from
 the client. In split-mode, an O(N*L) sized packet would then be
 transmitted to the backend server.

 ECH mitigates this attack by requiring that OuterExtensions be
 referenced in order, that duplicate references be rejected, and by
 recommending that client-facing servers use a linear scan to perform
 decompression. These requirements are detailed in Section 5.1.

11. IANA Considerations

11.1. Update of the TLS ExtensionType Registry

 IANA is requested to create the following entries in the existing
 registry for ExtensionType (defined in [RFC8446]):

 1. encrypted_client_hello(0xfe0d), with "TLS 1.3" column values set
 to "CH, HRR, EE", "DTLS-Only" column set to "N", and
 "Recommended" column set to "Yes".

 2. ech_outer_extensions(0xfd00), with the "TLS 1.3" column values
 set to "CH", "DTLS-Only" column set to "N", "Recommended" column
 set to "Yes", and the "Comment" column set to "Only appears in
 inner CH."

Rescorla, et al. Expires 5 September 2024 [Page 44]

Internet-Draft TLS Encrypted Client Hello March 2024

11.2. Update of the TLS Alert Registry

 IANA is requested to create an entry, ech_required(121) in the
 existing registry for Alerts (defined in [RFC8446]), with the "DTLS-
 OK" column set to "Y".

11.3. ECH Configuration Extension Registry

 IANA is requested to create a new "ECHConfig Extension" registry in a
 new "TLS Encrypted Client Hello (ECH) Configuration Extensions" page.
 New registrations need to list the following attributes:

 Value: The two-byte identifier for the ECHConfigExtension, i.e., the
 ECHConfigExtensionType
 Extension Name: Name of the ECHConfigExtension
 Recommended: A "Y" or "N" value indicating if the extension is TLS
 WG recommends that the extension be supported. This column is
 assigned a value of "N" unless explicitly requested. Adding a
 value with a value of "Y" requires Standards Action [RFC8126].
 Reference: The specification where the ECHConfigExtension is defined
 Notes: Any notes associated with the entry

 New entries in this registry are subject to the Specification
 Required registration policy ([RFC8126], Section 4.6).

 The registration policy for for the "ECHConfig Extension Type"
 registry is Specification Required [RFC8126].

 This document defines several Reserved values for ECH configuration
 extensions. These can be used by servers to "grease" the contents of
 the ECH configuration, as inspired by [RFC8701]. This helps ensure
 clients process ECH extensions correctly. When constructing ECH
 configurations, servers SHOULD randomly select from reserved values
 with the high-order bit clear. Correctly-implemented client will
 ignore those extensions.

 The reserved values with the high-order bit set are mandatory, as
 defined in Section 4.2. Servers SHOULD randomly select from these
 values and include them in extraneous ECH configurations. These
 extraneous ECH configurations SHOULD have invalid keys, and public
 names which the server does not respond to. Correctly-implemented
 clients will ignore these configurations.

 The initial contents for this registry consists of multiple reserved
 values, with the following attributes, which are repeated for each
 registration:

 Value: 0x0000, 0x1A1A, 0x2A2A, 0x3A3A, 0x4A4A, 0x5A5A, 0x6A6A,

Rescorla, et al. Expires 5 September 2024 [Page 45]

Internet-Draft TLS Encrypted Client Hello March 2024

 0x7A7A, 0x8A8A, 0x9A9A, 0xAAAA, 0xBABA, 0xCACA, 0xDADA, 0xEAEA,
 0xFAFA
 Extension Name: RESERVED
 Recommended: Y
 Reference: This document
 Notes: None

12. References

12.1. Normative References

 [ECH-IN-DNS]
 Schwartz, B. M., Bishop, M., and E. Nygren, "Bootstrapping
 TLS Encrypted ClientHello with DNS Service Bindings", Work
 in Progress, Internet-Draft, draft-ietf-tls-svcb-ech-00,
 26 September 2023, <https://datatracker.ietf.org/doc/html/
 draft-ietf-tls-svcb-ech-00>.

 [HPKE] Barnes, R., Bhargavan, K., Lipp, B., and C. Wood, "Hybrid
 Public Key Encryption", RFC 9180, DOI 10.17487/RFC9180,
 February 2022, <https://www.rfc-editor.org/rfc/rfc9180>.

 [HTTPS-RR] Schwartz, B. M., Bishop, M., and E. Nygren, "Service
 Binding and Parameter Specification via the DNS (SVCB and
 HTTPS Resource Records)", Work in Progress, Internet-
 Draft, draft-ietf-dnsop-svcb-https-12, 11 March 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-
 svcb-https-12>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC5890] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document Framework",
 RFC 5890, DOI 10.17487/RFC5890, August 2010,
 <https://www.rfc-editor.org/rfc/rfc5890>.

 [RFC7918] Langley, A., Modadugu, N., and B. Moeller, "Transport
 Layer Security (TLS) False Start", RFC 7918,
 DOI 10.17487/RFC7918, August 2016,
 <https://www.rfc-editor.org/rfc/rfc7918>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/rfc/rfc8126>.

Rescorla, et al. Expires 5 September 2024 [Page 46]

Internet-Draft TLS Encrypted Client Hello March 2024

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/rfc/rfc8446>.

 [RFC9147] Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", RFC 9147, DOI 10.17487/RFC9147, April 2022,
 <https://www.rfc-editor.org/rfc/rfc9147>.

12.2. Informative References

 [ECH-Analysis]
 "A Symbolic Analysis of Privacy for TLS 1.3 with Encrypted
 Client Hello", November 2022.

 [I-D.kazuho-protected-sni]
 Oku, K., "TLS Extensions for Protecting SNI", Work in
 Progress, Internet-Draft, draft-kazuho-protected-sni-00,
 18 July 2017, <https://datatracker.ietf.org/doc/html/
 draft-kazuho-protected-sni-00>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/rfc/rfc3986>.

 [RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 5077, DOI 10.17487/RFC5077,
 January 2008, <https://www.rfc-editor.org/rfc/rfc5077>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <https://www.rfc-editor.org/rfc/rfc7301>.

 [RFC7858] Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
 and P. Hoffman, "Specification for DNS over Transport
 Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May
 2016, <https://www.rfc-editor.org/rfc/rfc7858>.

Rescorla, et al. Expires 5 September 2024 [Page 47]

Internet-Draft TLS Encrypted Client Hello March 2024

 [RFC7924] Santesson, S. and H. Tschofenig, "Transport Layer Security
 (TLS) Cached Information Extension", RFC 7924,
 DOI 10.17487/RFC7924, July 2016,
 <https://www.rfc-editor.org/rfc/rfc7924>.

 [RFC8094] Reddy, T., Wing, D., and P. Patil, "DNS over Datagram
 Transport Layer Security (DTLS)", RFC 8094,
 DOI 10.17487/RFC8094, February 2017,
 <https://www.rfc-editor.org/rfc/rfc8094>.

 [RFC8484] Hoffman, P. and P. McManus, "DNS Queries over HTTPS
 (DoH)", RFC 8484, DOI 10.17487/RFC8484, October 2018,
 <https://www.rfc-editor.org/rfc/rfc8484>.

 [RFC8701] Benjamin, D., "Applying Generate Random Extensions And
 Sustain Extensibility (GREASE) to TLS Extensibility",
 RFC 8701, DOI 10.17487/RFC8701, January 2020,
 <https://www.rfc-editor.org/rfc/rfc8701>.

 [RFC8744] Huitema, C., "Issues and Requirements for Server Name
 Identification (SNI) Encryption in TLS", RFC 8744,
 DOI 10.17487/RFC8744, July 2020,
 <https://www.rfc-editor.org/rfc/rfc8744>.

 [WHATWG-IPV4]
 "URL Living Standard - IPv4 Parser", May 2021,
 <https://url.spec.whatwg.org/#concept-ipv4-parser>.

Appendix A. ECHConfig Extension Guidance

 Any future information or hints that influence ClientHelloOuter
 SHOULD be specified as ECHConfig extensions. This is primarily
 because the outer ClientHello exists only in support of ECH. Namely,
 it is both an envelope for the encrypted inner ClientHello and
 enabler for authenticated key mismatch signals (see Section 7). In
 contrast, the inner ClientHello is the true ClientHello used upon ECH
 negotiation.

Appendix B. Linear-time Outer Extension Processing

 The following procedure processes the "ech_outer_extensions"
 extension (see Section 5.1) in linear time, ensuring that each
 referenced extension in the ClientHelloOuter is included at most
 once:

 1. Let I be initialized to zero and N be set to the number of
 extensions in ClientHelloOuter.

Rescorla, et al. Expires 5 September 2024 [Page 48]

Internet-Draft TLS Encrypted Client Hello March 2024

 2. For each extension type, E, in OuterExtensions:

 * If E is "encrypted_client_hello", abort the connection with an
 "illegal_parameter" alert and terminate this procedure.

 * While I is less than N and the I-th extension of
 ClientHelloOuter does not have type E, increment I.

 * If I is equal to N, abort the connection with an
 "illegal_parameter" alert and terminate this procedure.

 * Otherwise, the I-th extension of ClientHelloOuter has type E.
 Copy it to the EncodedClientHelloInner and increment I.

Appendix C. Acknowledgements

 This document draws extensively from ideas in
 [I-D.kazuho-protected-sni], but is a much more limited mechanism
 because it depends on the DNS for the protection of the ECH key.
 Richard Barnes, Christian Huitema, Patrick McManus, Matthew Prince,
 Nick Sullivan, Martin Thomson, and David Benjamin also provided
 important ideas and contributions.

Appendix D. Change Log

 RFC Editor’s Note: Please remove this section prior to
 publication of a final version of this document.

 Issue and pull request numbers are listed with a leading octothorp.

D.1. Since draft-ietf-tls-esni-16

 * Keep-alive

D.2. Since draft-ietf-tls-esni-15

 * Add CCS2022 reference and summary (#539)

D.3. Since draft-ietf-tls-esni-14

 * Keep-alive

D.4. Since draft-ietf-tls-esni-13

 * Editorial improvements

Rescorla, et al. Expires 5 September 2024 [Page 49]

Internet-Draft TLS Encrypted Client Hello March 2024

D.5. Since draft-ietf-tls-esni-12

 * Abort on duplicate OuterExtensions (#514)

 * Improve EncodedClientHelloInner definition (#503)

 * Clarify retry configuration usage (#498)

 * Expand on config_id generation implications (#491)

 * Server-side acceptance signal extension GREASE (#481)

 * Refactor overview, client implementation, and middlebox sections
 (#480, #478, #475, #508)

 * Editorial iprovements (#485, #488, #490, #495, #496, #499, #500,
 #501, #504, #505, #507, #510, #511)

D.6. Since draft-ietf-tls-esni-11

 * Move ClientHello padding to the encoding (#443)

 * Align codepoints (#464)

 * Relax OuterExtensions checks for alignment with RFC8446 (#467)

 * Clarify HRR acceptance and rejection logic (#470)

 * Editorial improvements (#468, #465, #462, #461)

D.7. Since draft-ietf-tls-esni-10

 * Make HRR confirmation and ECH acceptance explicit (#422, #423)

 * Relax computation of the acceptance signal (#420, #449)

 * Simplify ClientHelloOuterAAD generation (#438, #442)

 * Allow empty enc in ECHClientHello (#444)

 * Authenticate ECHClientHello extensions position in
 ClientHelloOuterAAD (#410)

 * Allow clients to send a dummy PSK and early_data in
 ClientHelloOuter when applicable (#414, #415)

 * Compress ECHConfigContents (#409)

Rescorla, et al. Expires 5 September 2024 [Page 50]

Internet-Draft TLS Encrypted Client Hello March 2024

 * Validate ECHConfig.contents.public_name (#413, #456)

 * Validate ClientHelloInner contents (#411)

 * Note split-mode challenges for HRR (#418)

 * Editorial improvements (#428, #432, #439, #445, #458, #455)

D.8. Since draft-ietf-tls-esni-09

 * Finalize HPKE dependency (#390)

 * Move from client-computed to server-chosen, one-byte config
 identifier (#376, #381)

 * Rename ECHConfigs to ECHConfigList (#391)

 * Clarify some security and privacy properties (#385, #383)

Authors’ Addresses

 Eric Rescorla
 Windy Hill Systems, LLC
 Email: ekr@rtfm.com

 Kazuho Oku
 Fastly
 Email: kazuhooku@gmail.com

 Nick Sullivan
 Cryptography Consulting LLC
 Email: nicholas.sullivan+ietf@gmail.com

 Christopher A. Wood
 Cloudflare
 Email: caw@heapingbits.net

Rescorla, et al. Expires 5 September 2024 [Page 51]

