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Abstract

   This document gives a construction for a Key Encapsulation Mechanism
   (KEM)-based authentication mechanism in TLS 1.3.  This proposal
   authenticates peers via a key exchange protocol, using their long-
   term (KEM) public keys.

About This Document

   This note is to be removed before publishing as an RFC.

   Status information for this document may be found at
   https://datatracker.ietf.org/doc/draft-celi-wiggers-tls-authkem/.

   Discussion of this document takes place on the tlswg Working Group
   mailing list (mailto:tls@ietf.org), which is archived at
   https://mailarchive.ietf.org/arch/browse/tls/.  Subscribe at
   https://www.ietf.org/mailman/listinfo/tls/.

   Source for this draft and an issue tracker can be found at
   https://github.com/kemtls/draft-celi-wiggers-tls-authkem.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.
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   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 17 October 2024.

Copyright Notice

   Copyright (c) 2024 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Revised BSD License text as
   described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Revised BSD License.
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1.  Introduction

   *Note:* This is a work-in-progress draft.  We welcome discussion,
   feedback and contributions through the IETF TLS working group mailing
   list or directly on GitHub.  Any code points indicated by this draft
   are for experiments only, and should not be expected to be stable.

   This document gives a construction for KEM-based authentication in
   TLS 1.3 [RFC8446].  Authentication happens via asymmetric
   cryptography by the usage of KEMs advertised as the long-term KEM
   public keys in the Certificate.

   TLS 1.3 is in essence a signed key exchange protocol (if using
   certificate-based authentication).  Authentication in TLS 1.3 is
   achieved by signing the handshake transcript with digital signatures
   algorithms.  KEM-based authentication provides authentication by
   deriving a shared secret that is encapsulated against the public key
   contained in the Certificate.  Only the holder of the private key
   corresponding to the certificate’s public key can derive the same
   shared secret and thus decrypt its peer’s messages.

   This approach is appropriate for endpoints that have KEM public keys.
   Though this is currently rare, certificates can be issued with (EC)DH
   public keys as specified for instance in [RFC8410], or using a
   delegation mechanism, such as delegated credentials
   [I-D.ietf-tls-subcerts].
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   In this proposal, we build on [RFC9180].  This standard currently
   only covers Diffie-Hellman based KEMs, but the first post-quantum
   algorithms have already been put forward
   [I-D.draft-westerbaan-cfrg-hpke-xyber768d00].  This proposal uses
   Kyber [KYBER] [I-D.draft-cfrg-schwabe-kyber], the first selected
   algorithm for key exchange in the NIST post-quantum standardization
   project [NISTPQC].

1.1.  Revision history

   *This section should be removed prior to publication of a final
   version of this document.*

   *  Revision draft-celi-wiggers-tls-authkem-03

      -  Assigned experimental code points

      -  Re-worked HPKE computation

   *  Revision draft-celi-wiggers-tls-authkem-02

      -  Split PSK mechanism off into
         [I-D.draft-wiggers-tls-authkem-psk]

      -  Editing

   *  Revision draft-celi-wiggers-tls-authkem-01

      -  Significant Editing

      -  Use HPKE context

   *  Revision draft-celi-wiggers-tls-authkem-00

      -  Initial version

1.1.1.  Revision 2

1.2.  Using key exchange instead of signatures for authentication

   The elliptic-curve and finite-field-based key exchange and signature
   algorithms that are currently widely used are very similar in sizes
   for public keys, ciphertexts and signatures.  As an example, RSA
   signatures are famously "just" RSA encryption backwards.

Wiggers, et al.          Expires 17 October 2024                [Page 4]



Internet-Draft                   AuthKEM                      April 2024

   This changes in the post-quantum setting.  Post-quantum key exchange
   and signature algorithms have significant differences in
   implementation, performance characteristics, and key and signature
   sizes.

   This also leads to increases in code size: For example, implementing
   highly efficient polynomial multiplication for post-quantum KEM Kyber
   and signature scheme Dilithium [DILITHIUM] requires significantly
   different approaches, even though the algorithms are related [K22].

   Using the protocol proposed in this draft allows to reduce the amount
   of data exchanged for handshake authentication.  It also allows to
   re-use the implementation that is used for ephemeral key exchange for
   authentication, as KEM operations replace signing.  This decreases
   the code size requirements, which is especially relevant to protected
   implementations.  Finally, KEM operations may be more efficient than
   signing, which might especially affect embedded platforms.

1.3.  Evaluation of handshake sizes

   *Should probably be removed before publishing*

   In the following table, we compare the sizes of TLS 1.3- and AuthKEM-
   based handshakes.  We give the transmission requirements for
   handshake authentication (public key + signature), and certificate
   chain (intermediate CA certificate public key and signature + root CA
   signature).  For clarity, we are not listing post-quantum/traditional
   hybrid algorithms; we also omit mechanisms such as Certificate
   Transparency [RFC6962] or OCSP stapling [RFC6960].  We use Kyber-768
   instead of the smaller Kyber-512 parameter set, as the former is
   currently used in experimental deployments.  For signatures, we use
   Dilithium, the "primary" algorithm selected by NIST for post-quantum
   signatures, as well as Falcon [FALCON], the algorithm that offers
   smaller public key and signature sizes, but which NIST indicates can
   be used if the implementation requirements can be met.
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    +===========+===================+=========+===============+======+
    | Handshake | HS auth algorithm | HS Auth | Certificate   | Sum  |
    |           |                   | bytes   | chain bytes   |      |
    +===========+===================+=========+===============+======+
    | TLS 1.3   | RSA-2048          | 528     | 784 (RSA-     | 1312 |
    |           |                   |         | 2048)         |      |
    +-----------+-------------------+---------+---------------+------+
    | TLS 1.3   | Dilithium-2       | 3732    | 6152          | 9884 |
    |           |                   |         | (Dilithium-2) |      |
    +-----------+-------------------+---------+---------------+------+
    | TLS 1.3   | Falcon-512        | 1563    | 2229 (Falcon- | 3792 |
    |           |                   |         | 512)          |      |
    +-----------+-------------------+---------+---------------+------+
    | TLS 1.3   | Dilithium-2       | 3732    | 2229 (Falcon- | 5961 |
    |           |                   |         | 512)          |      |
    +-----------+-------------------+---------+---------------+------+
    | AuthKEM   | Kyber-768         | 2272    | 6152          | 8424 |
    |           |                   |         | (Dilithium-2) |      |
    +-----------+-------------------+---------+---------------+------+
    | AuthKEM   | Kyber-768         | 2272    | 2229 (Falcon- | 4564 |
    |           |                   |         | 512)          |      |
    +-----------+-------------------+---------+---------------+------+

      Table 1: Size comparison of public-key cryptography in TLS 1.3
                         and AuthKEM handshakes.

   Note that although TLS 1.3 with Falcon-512 is the smallest
   instantiation, Falcon is very challenging to implement: signature
   generation requires (emulation of) 64-bit floating point operations
   in constant time.  It is also very difficult to protect against other
   side-channel attacks, as there are no known methods of masking
   Falcon.  In light of these difficulties, use of Falcon-512 in online
   handshake signatures may not be wise.

   Using AuthKEM with Falcon-512 in the certificate chain remains an
   attractive option, however: the certificate issuance process, because
   it is mostly offline, could perhaps be set up in a way to protect the
   Falcon implementation against attacks.  Falcon signature verification
   is fast and does not require floating-point arithmetic.  Avoiding
   online usage of Falcon in TLS 1.3 requires two implementations of the
   signature verification routines, i.e., Dilithium and Falcon, on top
   of the key exchange algorithm.
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   In all examples, the size of the certificate chain still dominates
   the TLS handshake, especially if Certificate Transparency SCT
   statements are included, which is relevant in the context of the
   WebPKI.  However, we believe that if proposals to reduce transmission
   sizes of the certificate chain in the WebPKI context are implemented,
   the space savings of AuthKEM naturally become relatively larger and
   more significant.  We discuss this in Section 1.4.2.

1.4.  Related work

1.4.1.  OPTLS

   This proposal draws inspiration from [I-D.ietf-tls-semistatic-dh],
   which is in turn based on the OPTLS proposal for TLS 1.3 [KW16].
   However, these proposals require a non-interactive key exchange: they
   combine the client’s public key with the server’s long-term key.
   This imposes an extra requirement: the ephemeral and static keys MUST
   use the same algorithm, which this proposal does not require.
   Additionally, there are no post-quantum proposals for a non-
   interactive key exchange currently considered for standardization,
   while several KEMs are on the way.

1.4.2.  Compressing certificates and certificate chains

   AuthKEM reduces the amount of data required for authentication in
   TLS.  In recognition of the large increase in handshake size that a
   naive adoption of post-quantum signatures would affect, several
   proposals have been put forward that aim to reduce the size of
   certificates in the TLS handshake.  [RFC8879] proposes a certificate
   compression mechanism based on compression algorithms, but this is
   not very helpful to reduce the size of high-entropy public keys and
   signatures.  Proposals that offer more significant reductions of
   sizes of certificate chains, such as
   [I-D.draft-jackson-tls-cert-abridge], [I-D.ietf-tls-ctls],
   [I-D.draft-kampanakis-tls-scas-latest], and
   [I-D.draft-davidben-tls-merkle-tree-certs] all mainly rely on some
   form of out-of-band distribution of intermediate certificates or
   other trust anchors in a way that requires a robust update mechanism.
   This makes these proposals mainly suitable for the WebPKI setting;
   although this is also the setting that has the largest number of
   certificates due to the inclusion of SCT statements [RFC6962] and
   OSCP staples [RFC6960].
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   AuthKEM complements these approaches in the WebPKI setting.  On its
   own the gains that AuthKEM offers may be modest compared to the large
   sizes of certificate chains.  But when combined with compression or
   certificate suppression mechanisms such as those proposed in the
   referenced drafts, the reduction in handshake size when replacing
   Dilithium-2 by Kyber-768 becomes significant again.

1.5.  Organization

   After a brief introduction to KEMs, we will introduce the AuthKEM
   authentication mechanism.  For clarity, we discuss unilateral and
   mutual authentication separately.  In the remainder of the draft, we
   will discuss the necessary implementation mechanics, such as code
   points, extensions, new protocol messages and the new key schedule.
   The draft concludes with ah extensive discussion of relevant security
   considerations.

   A related mechanism for KEM-based PSK-style handshakes is discussed
   in [I-D.draft-wiggers-tls-authkem-psk].

2.  Conventions and definitions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

2.1.  Terminology

   The following terms are used as they are in [RFC8446]

   client:  The endpoint initiating the TLS connection.

   connection:  A transport-layer connection between two endpoints.

   endpoint:  Either the client or server of the connection.

   handshake:  An initial negotiation between client and server that
      establishes the parameters of their subsequent interactions within
      TLS.

   peer:  An endpoint.  When discussing a particular endpoint, "peer"
      refers to the endpoint that is not the primary subject of
      discussion.

   receiver:  An endpoint that is receiving records.
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   sender:  An endpoint that is transmitting records.

   server:  The endpoint that responded to the initiation of the TLS
      connection. i.e. the peer of the client.

2.2.  Key Encapsulation Mechanisms

   As this proposal relies heavily on KEMs, which are not originally
   used by TLS, we will provide a brief overview of this primitive.
   Other cryptographic operations will be discussed later.

   A Key Encapsulation Mechanism (KEM) is a cryptographic primitive that
   defines the methods Encapsulate and Decapsulate.  In this draft, we
   extend these operations with context separation strings, per HPKE
   [RFC9180]:

   Encapsulate(pkR, context_string):
      Takes a public key, and produces a shared secret and
      encapsulation.

   Decapsulate(enc, skR, context_string):
      Takes the encapsulation and the private key.  Returns the shared
      secret.

   We implement these methods through the KEMs defined in [RFC9180] to
   export shared secrets appropriate for using with the HKDF in TLS 1.3:

   def Encapsulate(pk, context_string):
     enc, ctx = HPKE.SetupBaseS(pk, "tls13 auth-kem")
     ss = ctx.Export(context_string, HKDF.Length)
     return (enc, ss)

   def Decapsulate(enc, sk, context_string):
     return HPKE.SetupBaseR(enc, sk, "tls13 auth-kem")
                .Export(context_string, HKDF.Length)

   Keys are generated and encoded for transmission following the
   conventions in [RFC9180].  The values of context_string are defined
   in Section 4.3.2.

   *Open question:* Should we keep using HPKE, or just use "plain" KEMs,
   as in the original KEMTLS works?  Please see the discussion at Issue
   #32 (https://github.com/kemtls/draft-celi-wiggers-tls-authkem/
   issues/32).
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3.  Full 1.5-RTT AuthKEM Handshake Protocol

   Figure 1 below shows the basic KEM-authentication (AuthKEM)
   handshake, without client authentication:

          Client                                     Server

   Key  ^ ClientHello
   Exch | + key_share
        v + signature_algorithms
                             -------->
                                                ServerHello  ^ Key
                                                + key_share  v Exch
                                      <EncryptedExtensions>
                                              <Certificate>  ^
          <KEMEncapsulation>  -------->                      |
          {Finished}          -------->                      | Auth
          [Application Data]  -------->                      |
                              <--------          {Finished}  v

          [Application Data]  <------->  [Application Data]

           +  Indicates noteworthy extensions sent in the
              previously noted message.
           <> Indicates messages protected using keys
              derived from a [sender]_handshake_traffic_secret.
           {} Indicates messages protected using keys
              derived from a
              [sender]_authenticated_handshake_traffic_secret.
           [] Indicates messages protected using keys
              derived from [sender]_application_traffic_secret_N.

          Figure 1: Message Flow for KEM-Authentication (KEM-Auth)
                    Handshake without client authentication.

   This basic handshake captures the core of AuthKEM.  Instead of using
   a signature to authenticate the handshake, the client encapsulates a
   shared secret to the server’s certificate public key.  Only the
   server that holds the private key corresponding to the certificate
   public key can derive the same shared secret.  This shared secret is
   mixed into the handshake’s key schedule.  The client does not have to
   wait for the server’s Finished message before it can send data.  The
   client knows that its message can only be decrypted if the server was
   able to derive the authentication shared secret encapsulated in the
   KEMEncapsulation message.

   Finished messages are sent as in TLS 1.3, and achieve full explicit
   authentication.
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3.1.  Client authentication

   For client authentication, the server sends the CertificateRequest
   message as in [RFC8446].  This message can not be authenticated in
   the AuthKEM handshake: we will discuss the implications below.

   As in [RFC8446], section 4.4.2, if and only if the client receives
   CertificateRequest, it MUST send a Certificate message.  If the
   client has no suitable certificate, it MUST send a Certificate
   message containing no certificates.  If the server is satisfied with
   the provided certificate, it MUST send back a KEMEncapsulation
   message, containing the encapsulation to the client’s certificate.
   The resulting shared secret is mixed into the key schedule.  This
   ensures any messages sent using keys derived from it are covered by
   the authentication.

   The AuthKEM handshake with client authentication is given in
   Figure 2.
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          Client                                     Server

   Key  ^ ClientHello
   Exch | + key_share
        v + signature_algorithms
                             -------->
                                                ServerHello  ^ Key
                                                + key_share  v Exch
                                      <EncryptedExtensions>  ^ Server
                                       <CertificateRequest>  v Params
                                              <Certificate>  ^
        ^ <KEMEncapsulation>                                 |
        | {Certificate}       -------->                      |
   Auth |                     <--------  {KEMEncapsulation}  | Auth
        v {Finished}          -------->                      |
          [Application Data]  -------->                      |
                              <-------           {Finished}  v

          [Application Data]  <------->  [Application Data]

           +  Indicates noteworthy extensions sent in the
              previously noted message.
           <> Indicates messages protected using keys
              derived from a [sender]_handshake_traffic_secret.
           {} Indicates messages protected using keys
              derived from a
              [sender]_authenticated_handshake_traffic_secret.
           [] Indicates messages protected using keys
              derived from [sender]_application_traffic_secret_N.

          Figure 2: Message Flow for KEM-Authentication (KEM-Auth)
                    Handshake with client authentication.

   If the server is not satisfied with the client’s certificates, it
   MAY, at its discretion, decide to continue or terminate the
   handshake.  If it decides to continue, it MUST NOT send back a
   KEMEncapsulation message and the client and server MUST compute the
   encryption keys as in the server-only authenticated AuthKEM
   handshake.  The Certificate remains included in the transcript.  The
   client MUST NOT assume it has been authenticated.

   Unfortunately, AuthKEM client authentication requires an extra round-
   trip.  Clients that know the server’s long-term public KEM key MAY
   choose to use the abbreviated AuthKEM handshake and opportunistically
   send the client certificate as a 0-RTT-like message.  This mechanism
   is discussed in [I-D.draft-wiggers-tls-authkem-psk].
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3.2.  Relevant handshake messages

   After the Key Exchange and Server Parameters phase of TLS 1.3
   handshake, the client and server exchange implicitly authenticated
   messages.  KEM-based authentication uses the same set of messages
   every time that certificate-based authentication is needed.
   Specifically:

   *  Certificate: The certificate of the endpoint and any per-
      certificate extensions.  This message MUST be omitted by the
      client if the server did not send a CertificateRequest message
      (thus indicating that the client should not authenticate with a
      certificate).  For AuthKEM, Certificate MUST include the long-term
      KEM public key.  Certificates MUST be handled in accordance with
      [RFC8446], section 4.4.2.4.

   *  KEMEncapsulation: A key encapsulation against the certificate’s
      long-term public key, which yields an implicitly authenticated
      shared secret.

3.3.  Overview of key differences with RFC8446 TLS 1.3

   *  New types of signature_algorithms for KEMs.

   *  Public keys in certificates are KEM algorithms.

   *  New handshake message KEMEncapsulation.

   *  The key schedule mixes in the shared secrets from the
      authentication.

   *  The Certificate is sent encrypted with a new handshake encryption
      key.

   *  The client sends Finished before the server.

   *  The client sends data before the server has sent Finished.

3.4.  Implicit and explicit authentication

   The data that the client MAY transmit to the server before having
   received the server’s Finished is encrypted using ciphersuites chosen
   based on the client’s and server’s advertised preferences in the
   ClientHello and ServerHello messages.  The ServerHello message can
   however not be authenticated before the Finished message from the
   server is verified.  The full implications of this are discussed in
   the Security Considerations section.
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   Upon receiving the client’s authentication messages, the server
   responds with its Finished message, which achieves explicit
   authentication.  Upon receiving the server’s Finished message, the
   client achieves explicit authentication.  Receiving this message
   retroactively confirms the server’s cryptographic parameter choices.

3.5.  Authenticating CertificateRequest

   The CertificateRequest message can not be authenticated during the
   AuthKEM handshake; only after the Finished message from the server
   has been processed, it can be proven as authentic.  The security
   implications of this are discussed later.

   *This is discussed in GitHub issue #16 (https://github.com/kemtls/
   draft-celi-wiggers-tls-authkem/issues/16).  We would welcome feedback
   there.*

   Clients MAY choose to only accept post-handshake authentication.

   *TODO: Should they indicate this?  TLS Flag?*

4.  Implementation

   In this section we will discuss the implementation details such as
   extensions and key schedule.

4.1.  Negotiation of AuthKEM

   Clients will indicate support for this mode by negotiating it as if
   it were a signature scheme (part of the signature_algorithms
   extension).  We thus add these new signature scheme values (even
   though, they are not signature schemes) for the KEMs defined in
   [RFC9180] Section 7.1.  Note that we will be only using their
   internal KEM’s API defined there.

enum {
  dhkem_p256_sha256   => TBD,
  dhkem_p384_sha384   => TBD,
  dhkem_p521_sha512   => TBD,
  dhkem_x25519_sha256 => 0xFE01,
  dhkem_x448_sha512   => TBD,
  kem_x25519kyber768  => TBD, /*draft-westerbaan-cfrg-hpke-xyber768d00*/
}

   *Please give feedback on which KEMs should be included*
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   When present in the signature_algorithms extension, these values
   indicate AuthKEM support with the specified key exchange mode.  These
   values MUST NOT appear in signature_algorithms_cert, as this
   extension specifies the signing algorithms by which certificates are
   signed.

4.2.  Protocol messages

   The handshake protocol is used to negotiate the security parameters
   of a connection, as in TLS 1.3.  It uses the same messages, expect
   for the addition of a KEMEncapsulation message and does not use the
   CertificateVerify one.

   enum {
       ...
       kem_encapsulation(30),
       ...
       (255)
     } HandshakeType;

   struct {
       HandshakeType msg_type;    /* handshake type */
       uint24 length;             /* remaining bytes in message */
       select (Handshake.msg_type) {
           ...
           case kem_encapsulation:     KEMEncapsulation;
           ...
       };
   } Handshake;

   Protocol messages MUST be sent in the order defined in Section 4.  A
   peer which receives a handshake message in an unexpected order MUST
   abort the handshake with a "unexpected_message" alert.

   The KEMEncapsulation message is defined as follows:

   struct {
       opaque certificate_request_context<0..2^8-1>
       opaque encapsulation<0..2^16-1>;
   } KEMEncapsulation;

   The encapsulation field is the result of a Encapsulate function.  The
   Encapsulate() function will also result in a shared secret (ssS or
   ssC, depending on the peer) which is used to derive the AHS or MS
   secrets (See Section 4.3.1).
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   If the KEMEncapsulation message is sent by a server, the
   authentication algorithm MUST be one offered in the client’s
   signature_algorithms extension.  Otherwise, the server MUST terminate
   the handshake with an "unsupported_certificate" alert.

   If sent by a client, the authentication algorithm used in the
   signature MUST be one of those present in the
   supported_signature_algorithms field of the signature_algorithms
   extension in the CertificateRequest message.

   In addition, the authentication algorithm MUST be compatible with the
   key(s) in the sender’s end-entity certificate.

   The receiver of a KEMEncapsulation message MUST perform the
   Decapsulate() operation by using the sent encapsulation and the
   private key of the public key advertised in the end-entity
   certificate sent.  The Decapsulate() function will also result on a
   shared secret (ssS or ssC, depending on the Server or Client
   executing it respectively) which is used to derive the AHS or MS
   secrets.

   certificate_request_context is included to allow the recipient to
   identify the certificate against which the encapsulation was
   generated.  It MUST be set to the value in the Certificate message to
   which the encapsulation was computed.

4.3.  Cryptographic computations

   The AuthKEM handshake establishes three input secrets which are
   combined to create the actual working keying material, as detailed
   below.  The key derivation process incorporates both the input
   secrets and the handshake transcript.  Note that because the
   handshake transcript includes the random values from the Hello
   messages, any given handshake will have different traffic secrets,
   even if the same input secrets are used.

4.3.1.  Key schedule for full AuthKEM handshakes

   AuthKEM uses the same HKDF-Extract and HKDF-Expand functions as
   defined by TLS 1.3, in turn defined by [RFC5869].

   Keys are derived from two input secrets using the HKDF-Extract and
   Derive-Secret functions.  The general pattern for adding a new secret
   is to use HKDF-Extract with the Salt being the current secret state
   and the Input Keying Material (IKM) being the new secret to be added.

   The notable differences are:
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   *  The addition of the Authenticated Handshake Secret and a new set
      of handshake traffic encryption keys.

   *  The inclusion of the SSs and SSc (if present) shared secrets as
      IKM to Authenticated Handshake Secret and Main Secret,
      respectively.

   The full key schedule proceeds as follows:

               0
               |
               v
       PSK -> HKDF-Extract = Early Secret
               |
               +--> Derive-Secret(., "ext binder" | "res binder", "")
               |                  = binder_key
               |
               +--> Derive-Secret(., "c e traffic", ClientHello)
               |                  = client_early_traffic_secret
               |
               +--> Derive-Secret(., "e exp master", ClientHello)
               |                  = early_exporter_master_secret
               v
               Derive-Secret(., "derived", "")
               |
               v
   (EC)DHE -> HKDF-Extract = Handshake Secret
               |
               +--> Derive-Secret(., "c hs traffic",
               |                  ClientHello...ServerHello)
               |                  = client_handshake_traffic_secret
               |
               +--> Derive-Secret(., "s hs traffic",
               |                  ClientHello...ServerHello)
               |                  = server_handshake_traffic_secret
               v
               Derive-Secret(., "derived", "") = dHS
               |
               v
       SSs -> HKDF-Extract = Authenticated Handshake Secret
               |
               +--> Derive-Secret(., "c ahs traffic",
               |                  ClientHello...KEMEncapsulation)
               |         = client_handshake_authenticated_traffic_secret
               |
               +--> Derive-Secret(., "s ahs traffic",
               |                  ClientHello...KEMEncapsulation)
               |         = server_handshake_authenticated_traffic_secret
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               v
               Derive-Secret(., "derived", "") = dAHS
               |
               v
   SSc||0 * -> HKDF-Extract = Main Secret
               |
               +--> Derive-Secret(., "c ap traffic",
               |                  ClientHello...client Finished)
               |                  = client_application_traffic_secret_0
               |
               +--> Derive-Secret(., "s ap traffic",
               |                  ClientHello...server Finished)
               |                  = server_application_traffic_secret_0
               |
               +--> Derive-Secret(., "exp master",
               |                  ClientHello...server Finished)
               |                  = exporter_master_secret
               |
               +--> Derive-Secret(., "res master",
                                  ClientHello...server Finished)
                                  = resumption_master_secret

   *: if client authentication was requested, the ‘SSc‘ value should
      be used. Otherwise, the ‘0‘ value is used.

4.3.2.  Computations of KEM shared secrets

   The operations to compute SSs or SSc from the client are:

   SSs, encapsulation <- Encapsulate(public_key_server,
                                     "server authentication")
                  SSc <- Decapsulate(encapsulation, private_key_client,
                                     "client authentication")

   The operations to compute SSs or SSc from the server are:

                  SSs <- Decapsulate(encapsulation, private_key_server
                                     "server authentication")
   SSc, encapsulation <- Encapsulate(public_key_client,
                                     "client authentication")

4.3.3.  Explicit Authentication Messages

   AuthKEM upgrades implicit to explicit authentication through the
   Finished message.  Note that in the full handshake, AuthKEM achieves
   explicit authentication only when the server sends the final Finished
   message (the client is only implicitly authenticated when they send
   their Finished message).
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   Full downgrade resilience and forward secrecy is achieved once the
   AuthKEM handshake completes.

   The key used to compute the Finished message MUST be computed from
   the MainSecret using HKDF (instead of a key derived from HS as in
   [RFC8446]).  Specifically:

   server/client_finished_key =
     HKDF-Expand-Label(MainSecret,
                       server/client_label,
                       "", Hash.length)
   server_label = "tls13 server finished"
   client_label = "tls13 client finished"

   The verify_data value is computed as follows.  Note that instead of
   what is specified in [RFC8446], we use the full transcript for both
   server and client Finished messages:

   server/client_verify_data =
         HMAC(server/client_finished_key,
              Transcript-Hash(Handshake Context,
                              Certificate*,
                              KEMEncapsulation*,
                              Finished**))

   *  Only included if present.
   ** The party who last sends the finished message in terms of flights
      includes the other party’s Finished message.

   Any records following a Finished message MUST be encrypted under the
   appropriate application traffic key as described in [RFC8446].  In
   particular, this includes any alerts sent by the server in response
   to client Certificate and KEMEncapsulation messages.

   See [SSW20] for a full treatment of implicit and explicit
   authentication.

5.  Security Considerations

5.1.  Implicit authentication

   Because preserving a 1/1.5RTT handshake in KEM-Auth requires the
   client to send its request in the same flight when the ServerHello
   message is received, it can not yet have explicitly authenticated the
   server.  However, through the inclusion of the key encapsulated to
   the server’s long-term secret, only an authentic server should be
   able to decrypt these messages.
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   However, the client can not have received confirmation that the
   server’s choices for symmetric encryption, as specified in the
   ServerHello message, were authentic.  These are not authenticated
   until the Finished message from the server arrived.  This may allow
   an adversary to downgrade the symmetric algorithms, but only to what
   the client is willing to accept.  If such an attack occurs, the
   handshake will also never successfully complete and no data can be
   sent back.

   If the client trusts the symmetric algorithms advertised in its
   ClientHello message, this should not be a concern.  A client MUST NOT
   accept any cryptographic parameters it does not include in its own
   ClientHello message.

   If client authentication is used, explicit authentication is reached
   before any application data, on either client or server side, is
   transmitted.

   Application Data MUST NOT be sent prior to sending the Finished
   message, except as specified in Section 2.3 of [RFC8446].  Note that
   while the client MAY send Application Data prior to receiving the
   server’s last explicit Authentication message, any data sent at that
   point is, being sent to an implicitly authenticated peer.

5.2.  Authentication of Certificate Request

   Due to the implicit authentication of the server’s messages during
   the full AuthKEM handshake, the CertificateRequest message can not be
   authenticated before the client received Finished.

   The key schedule guarantees that the server can not read the client’s
   certificate message (as discussed above).  An active adversary that
   maliciously inserts a CertificateRequest message will also result in
   a mismatch in transcript hashes, which will cause the handshake to
   fail.

   However, there may be side effects.  The adversary might learn that
   the client has a certificate by observing the length of the messages
   sent.  There may also be side effects, especially in situations where
   the client is prompted to e.g. approve use or unlock a certificate
   stored encrypted or on a smart card.
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5.3.  Other security considerations

   *  Because the Main Secret is derived from both the ephemeral key
      exchange, as well as from the key exchanges completed for server
      and (optionally) client authentication, the MS secret always
      reflects the peers’ views of the authentication status correctly.
      This is an improvement over TLS 1.3 for client authentication.

   *  The academic works proposing AuthKEM (KEMTLS) contains an in-depth
      technical discussion of and a proof of the security of the
      handshake protocol without client authentication [SSW20], [Wig24].

   *  The work proposing the variant protocol [SSW21], [Wig24] with pre-
      distributed public keys (the abbreviated AuthKEM handshake) has a
      proof for both unilaterally and mutually authenticated handshakes.

   *  We have proofs of the security of KEMTLS and KEMTLS-PDK in
      Tamarin.  [CHSW22]

   *  Application Data sent prior to receiving the server’s last
      explicit authentication message (the Finished message) can be
      subject to a client certificate suite downgrade attack.  Full
      downgrade resilience and forward secrecy is achieved once the
      handshake completes.

   *  The client’s certificate is kept secret from active observers by
      the derivation of the client_authenticated_handshake_secret, which
      ensures that only the intended server can read the client’s
      identity.

   *  If AuthKEM client authentication is used, the resulting shared
      secret is included in the key schedule.  This ensures that both
      peers have a consistent view of the authentication status, unlike
      [RFC8446].
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Appendix A.  Open points of discussion

   The following are open points for discussion.  The corresponding
   Github issues will be linked.

A.1.  Authentication concerns for client authentication requests.

   Tracked by Issue #16 (https://github.com/kemtls/draft-celi-wiggers-
   tls-authkem/issues/16).

   The certificate request message from the server can not be
   authenticated by the AuthKEM mechanism.  This is already somewhat
   discussed above and under security considerations.  We might want to
   allow clients to refuse client auth for scenarios where this is a
   concern.

A.2.  Interaction with signing certificates

   Tracked by Issue #20 (https://github.com/kemtls/draft-celi-wiggers-
   tls-authkem/issues/20).

   In the current state of the draft, we have not yet discussed
   combining traditional signature-based authentication with KEM-based
   authentication.  One might imagine that the Client has a sigining
   certificate and the server has a KEM public key.

   In the current draft, clients MUST use a KEM certificate algorithm if
   the server negotiated AuthKEM.
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