
webtrans                                                     A. Frindell

Internet-Draft                                             Facebook Inc.

Intended status: Standards Track                              E. Kinnear

Expires: 5 September 2024                                       T. Pauly

                                                              Apple Inc.

                                                              M. Thomson

                                                                 Mozilla

                                                             V. Vasiliev

                                                                  Google

                                                                  G. Xie

                                                           Facebook Inc.

                                                            4 March 2024

                        WebTransport over HTTP/2

                      draft-ietf-webtrans-http2-08

Abstract

   WebTransport defines a set of low-level communications features

   designed for client-server interactions that are initiated by Web

   clients.  This document describes a protocol that can provide many of

   the capabilities of WebTransport over HTTP/2.  This protocol enables

   the use of WebTransport when a UDP-based protocol is not available.

Note to Readers

   Discussion of this draft takes place on the WebTransport mailing list

   (webtransport@ietf.org (mailto:webtransport@ietf.org)), which is

   archived at https://mailarchive.ietf.org/arch/

   search/?email_list=webtransport.

   The repository tracking the issues for this draft can be found at

   https://github.com/ietf-wg-webtrans/draft-webtransport-http2.  The

   web API draft corresponding to this document can be found at

   https://w3c.github.io/webtransport/.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the

   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering

   Task Force (IETF).  Note that other groups may also distribute

   working documents as Internet-Drafts.  The list of current Internet-

   Drafts is at https://datatracker.ietf.org/drafts/current/.

Frindell, et al.        Expires 5 September 2024                [Page 1]



Internet-Draft               WebTransport-H2                  March 2024

   Internet-Drafts are draft documents valid for a maximum of six months

   and may be updated, replaced, or obsoleted by other documents at any

   time.  It is inappropriate to use Internet-Drafts as reference

   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 5 September 2024.

Copyright Notice

   Copyright (c) 2024 IETF Trust and the persons identified as the

   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal

   Provisions Relating to IETF Documents (https://trustee.ietf.org/

   license-info) in effect on the date of publication of this document.

   Please review these documents carefully, as they describe your rights

   and restrictions with respect to this document.  Code Components

   extracted from this document must include Revised BSD License text as

   described in Section 4.e of the Trust Legal Provisions and are

   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3

     1.1.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   3

   2.  Protocol Overview . . . . . . . . . . . . . . . . . . . . . .   4

   3.  Session Establishment . . . . . . . . . . . . . . . . . . . .   5

     3.1.  Establishing a Transport-Capable HTTP/2 Connection  . . .   5

     3.2.  Extended CONNECT in HTTP/2  . . . . . . . . . . . . . . .   5

     3.3.  Creating a New Session  . . . . . . . . . . . . . . . . .   5

     3.4.  Flow Control  . . . . . . . . . . . . . . . . . . . . . .   6

       3.4.1.  Limiting the Number of Simultaneous Sessions  . . . .   7

       3.4.2.  Limiting the Number of Streams Within a Session . . .   8

       3.4.3.  Initial Flow Control Limits . . . . . . . . . . . . .   8

       3.4.4.  Flow Control and Intermediaries . . . . . . . . . . .   9

   4.  WebTransport Features . . . . . . . . . . . . . . . . . . . .  10

     4.1.  Transport Properties  . . . . . . . . . . . . . . . . . .  10

     4.2.  WebTransport Streams  . . . . . . . . . . . . . . . . . .  11

   5.  WebTransport Capsules . . . . . . . . . . . . . . . . . . . .  11

     5.1.  PADDING Capsule . . . . . . . . . . . . . . . . . . . . .  12

     5.2.  WT_RESET_STREAM Capsule . . . . . . . . . . . . . . . . .  12

     5.3.  WT_STOP_SENDING Capsule . . . . . . . . . . . . . . . . .  13

     5.4.  WT_STREAM Capsule . . . . . . . . . . . . . . . . . . . .  13

     5.5.  WT_MAX_DATA Capsule . . . . . . . . . . . . . . . . . . .  14

     5.6.  WT_MAX_STREAM_DATA Capsule  . . . . . . . . . . . . . . .  15

     5.7.  WT_MAX_STREAMS Capsule  . . . . . . . . . . . . . . . . .  16

     5.8.  WT_DATA_BLOCKED Capsule . . . . . . . . . . . . . . . . .  17

     5.9.  WT_STREAM_DATA_BLOCKED Capsule  . . . . . . . . . . . . .  17

Frindell, et al.        Expires 5 September 2024                [Page 2]



Internet-Draft               WebTransport-H2                  March 2024

     5.10. WT_STREAMS_BLOCKED Capsule  . . . . . . . . . . . . . . .  18

     5.11. DATAGRAM Capsule  . . . . . . . . . . . . . . . . . . . .  18

     5.12. CLOSE_WEBTRANSPORT_SESSION Capsule  . . . . . . . . . . .  19

     5.13. DRAIN_WEBTRANSPORT_SESSION Capsule  . . . . . . . . . . .  20

   6.  Examples  . . . . . . . . . . . . . . . . . . . . . . . . . .  21

   7.  Session Termination . . . . . . . . . . . . . . . . . . . . .  22

   8.  Security Considerations . . . . . . . . . . . . . . . . . . .  23

   9.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  23

     9.1.  HTTP/2 SETTINGS Parameter Registration  . . . . . . . . .  23

     9.2.  Capsule Types . . . . . . . . . . . . . . . . . . . . . .  26

     9.3.  HTTP Header Field Name  . . . . . . . . . . . . . . . . .  28

   10. References  . . . . . . . . . . . . . . . . . . . . . . . . .  28

     10.1.  Normative References . . . . . . . . . . . . . . . . . .  28

     10.2.  Informative References . . . . . . . . . . . . . . . . .  30

   Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .  31

   Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

   Authors’ Addresses  . . . . . . . . . . . . . . . . . . . . . . .  32

1.  Introduction

   WebTransport [OVERVIEW] is designed to provide generic communication

   capabilities to Web clients that use HTTP/3 [HTTP3].  The HTTP/3

   WebTransport protocol [WEBTRANSPORT-H3] allows Web clients to use

   QUIC [QUIC] features such as streams or datagrams [DATAGRAM].

   However, there are some environments where QUIC cannot be deployed.

   This document defines a protocol that provides all of the core

   functions of WebTransport using HTTP semantics.  This includes

   unidirectional streams, bidirectional streams, and datagrams.

   By relying only on generic HTTP semantics, this protocol might allow

   deployment using any HTTP version.  However, this document only

   defines negotiation for HTTP/2 [HTTP2] as the current most common

   TCP-based fallback to HTTP/3.

1.1.  Terminology

   The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

   "OPTIONAL" in this document are to be interpreted as described in BCP

   14 [RFC2119] [RFC8174] when, and only when, they appear in all

   capitals, as shown here.

Frindell, et al.        Expires 5 September 2024                [Page 3]



Internet-Draft               WebTransport-H2                  March 2024

   This document follows terminology defined in Section 1.2 of

   [OVERVIEW].  Note that this document distinguishes between a

   WebTransport server and an HTTP/2 server.  An HTTP/2 server is the

   server that terminates HTTP/2 connections; a WebTransport server is

   an application that accepts WebTransport sessions, which can be

   accessed using HTTP/2 and this protocol.

2.  Protocol Overview

   WebTransport servers are identified by an HTTPS URI as defined in

   Section 4.2.2 of [HTTP].

   When an HTTP/2 connection is established, both the client and server

   have to send a SETTINGS_WEBTRANSPORT_MAX_SESSIONS setting with a

   value greater than "0" to indicate that they both support

   WebTransport over HTTP/2.  For servers, the value of the setting is

   the number of concurrent sessions the server is willing to receive.

   Clients cannot receive incoming WebTransport sessions, so any value

   greater than "0" sent by a client simply indicates support for

   WebTransport over HTTP/2.

   A client initiates a WebTransport session by sending an extended

   CONNECT request [RFC8441].  If the server accepts the request, a

   WebTransport session is established.  The stream that carries the

   CONNECT request is used to exchange bidirectional data for the

   session.  This stream will be referred to as a _CONNECT stream_.  The

   stream ID of a CONNECT stream, which will be referred to as a

   _Session ID_, is used to uniquely identify a given WebTransport

   session within the connection.  WebTransport using HTTP/2 uses

   extended CONNECT with the same webtransport HTTP Upgrade Token as

   [WEBTRANSPORT-H3].  This Upgrade Token uses the Capsule Protocol as

   defined in [HTTP-DATAGRAM].

   After the session is established, endpoints exchange WebTransport

   messages using the Capsule Protocol on the bidirectional CONNECT

   stream, the "data stream" as defined in Section 3.1 of

   [HTTP-DATAGRAM].

   Within this stream, _WebTransport streams_ and _WebTransport

   datagrams_ are multiplexed.  In HTTP/2, WebTransport capsules are

   carried in HTTP/2 DATA frames.  Multiple independent WebTransport

   sessions can share a connection if the HTTP version supports that, as

   HTTP/2 does.

   WebTransport capsules closely mirror a subset of QUIC frames and

   provide the essential WebTransport features.  Within a WebTransport

   session, endpoints can

Frindell, et al.        Expires 5 September 2024                [Page 4]



Internet-Draft               WebTransport-H2                  March 2024

   *  create and use bidirectional or unidirectional streams with no

      additional round trips using the WT_STREAM capsule

   Stream creation and data flow on streams uses flow control mechanisms

   modeled on those in QUIC.  Flow control is managed using the

   WebTransport capsules: WT_MAX_DATA, WT_MAX_STREAM_DATA,

   WT_MAX_STREAMS, WT_DATA_BLOCKED, WT_STREAM_DATA_BLOCKED, and

   WT_STREAMS_BLOCKED.  Flow control for the CONNECT stream as a whole,

   as provided by the HTTP version in use, applies in addition to any

   WebTransport-session-level flow control.

   WebTransport streams can be aborted using a WT_RESET_STREAM capsule

   and a receiver can request that a sender stop sending with a

   WT_STOP_SENDING capsule.

   A WebTransport session is terminated when the CONNECT stream that

   created it is closed.  This implicitly closes all WebTransport

   streams that were multiplexed over that CONNECT stream.

3.  Session Establishment

3.1.  Establishing a Transport-Capable HTTP/2 Connection

   In order to indicate support for WebTransport, both the client and

   the server MUST send a SETTINGS_WEBTRANSPORT_MAX_SESSIONS value

   greater than "0" in their SETTINGS frame.  Endpoints MUST NOT use any

   WebTransport-related functionality unless the parameter has been

   negotiated.

3.2.  Extended CONNECT in HTTP/2

   [RFC8441] defines an extended CONNECT method in Section 4, enabled by

   the SETTINGS_ENABLE_CONNECT_PROTOCOL parameter.  An endpoint needs to

   send both SETTINGS_ENABLE_CONNECT_PROTOCOL and

   SETTINGS_WEBTRANSPORT_MAX_SESSIONS for WebTransport to be enabled.

3.3.  Creating a New Session

   As WebTransport sessions are established over HTTP, they are

   identified using the https URI scheme [RFC7230].

Frindell, et al.        Expires 5 September 2024                [Page 5]



Internet-Draft               WebTransport-H2                  March 2024

   In order to create a new WebTransport session, a client can send an

   HTTP CONNECT request.  The :protocol pseudo-header field ([RFC8441])

   MUST be set to webtransport (Section 7.1 of [WEBTRANSPORT-H3]).  The

   :scheme field MUST be https.  Both the :authority and the :path value

   MUST be set; those fields indicate the desired WebTransport server.

   In a Web context, the request MUST include an Origin header field

   [ORIGIN] that includes the origin of the site that requested the

   creation of the session.

   Upon receiving an extended CONNECT request with a :protocol field set

   to webtransport, the HTTP server checks if the identified resource

   supports WebTransport sessions.  If the resource does not, the server

   SHOULD reply with status code 406 (Section 15.5.7 of [RFC9110]).  If

   it does, it MAY accept the session by replying with a 2xx series

   status code, as defined in Section 15.3 of [SEMANTICS].  The

   WebTransport server MUST verify the Origin header to ensure that the

   specified origin is allowed to access the server in question.

   A WebTransport session is established when the server sends a 2xx

   response.  A server generates that response from the request header,

   not from the contents of the request.  To enable clients to resend

   data when attempting to re-establish a session that was rejected by a

   server, a server MUST NOT process any capsules on the request stream

   unless it accepts the WebTransport session.

   A client MAY optimistically send any WebTransport capsules associated

   with a CONNECT request, without waiting for a response, to the extent

   allowed by flow control.  This can reduce latency for data sent by a

   client at the start of a WebTransport session.  For example, a client

   might choose to send datagrams or flow control updates before

   receiving any response from the server.

3.4.  Flow Control

   Flow control governs the amount of resources that can be consumed or

   data that can be sent.  WebTransport over HTTP/2 allows a server to

   limit the number of sessions that a client can create on a single

   connection; see Section 3.4.1.

   For data, there are five applicable levels of flow control for data

   that is sent or received using WebTransport over HTTP/2:

   1.  TCP flow control.

   2.  HTTP/2 connection flow control, which governs the total amount of

       data in DATA frames for all HTTP/2 streams.

Frindell, et al.        Expires 5 September 2024                [Page 6]



Internet-Draft               WebTransport-H2                  March 2024

   3.  HTTP/2 stream flow control, which limits the data on a single

       HTTP/2 stream.  For a WebTransport session, this includes all

       capsules, including those that are exempt from WebTransport

       session-level flow control.

   4.  WebTransport session-level flow control, which limits the total

       amount of stream data that can be sent or received on streams

       within the WebTransport session.  Note that this does not limit

       other types of capsules within a WebTransport session, such as

       control messages or datagrams.

   5.  WebTransport stream flow control, which limits data on individual

       streams within a session.

   TCP and HTTP/2 define the first three levels of flow control.  This

   document defines the final two.

3.4.1.  Limiting the Number of Simultaneous Sessions

   This document defines a SETTINGS_WEBTRANSPORT_MAX_SESSIONS parameter

   that allows the server to limit the maximum number of concurrent

   WebTransport sessions on a single HTTP/2 connection.  The client MUST

   NOT open more sessions than indicated in the server SETTINGS

   parameters.  The server MUST NOT close the connection if the client

   opens sessions exceeding this limit, as the client and the server do

   not have a consistent view of how many sessions are open due to the

   asynchronous nature of the protocol; instead, it MUST reset all of

   the CONNECT streams it is not willing to process with the

   REFUSED_STREAM error code (Section 8.7 of [HTTP2]).

   Just like other HTTP requests, WebTransport sessions, and data sent

   on those sessions, are counted against flow control limits.  Servers

   that wish to limit the rate of incoming requests on any particular

   session have multiple mechanisms:

   *  The REFUSED_STREAM error code defined in Section 8.7 of [HTTP2]

      indicates to the receiving HTTP/2 stack that the request was not

      processed in any way.

   *  HTTP status code 429 indicates that the request was rejected due

      to rate limiting [RFC6585].  Unlike the previous method, this

      signal is directly propagated to the application.

Frindell, et al.        Expires 5 September 2024                [Page 7]



Internet-Draft               WebTransport-H2                  March 2024

   An endpoint that wishes to reduce the value of

   SETTINGS_WEBTRANSPORT_MAX_SESSIONS to a value that is below the

   current number of open sessions can either close sessions that exceed

   the new value or allow those sessions to complete.  Endpoints MUST

   NOT reduce the value of SETTINGS_WEBTRANSPORT_MAX_SESSIONS to "0"

   after previously advertising a non-zero value.

3.4.2.  Limiting the Number of Streams Within a Session

   This document defines a WT_MAX_STREAMS capsule (Section 5.7) that

   allows each endpoint to limit the number of streams its peer is

   permitted to open as part of a WebTransport session.  There is a

   separate limit for bidirectional streams and for unidirectional

   streams.  Note that, unlike WebTransport over HTTP/3

   [WEBTRANSPORT-H3], because the entire WebTransport session is

   contained within HTTP/2 DATA frames on a single HTTP/2 stream, this

   limit is the only mechanism for an endpoint to limit the number of

   WebTransport streams that its peer can open on a session.

3.4.3.  Initial Flow Control Limits

   To allow stream data to be exchanged in the same flight as the

   extended CONNECT request that establishes a WebTransport session,

   initial flow control limits can be exchanged via HTTP/2 SETTINGS

   (Section 3.4.3.1).  Initial values for the flow control limits can

   also be exchanged via the WebTransport-Init header field on the

   extended CONNECT request (Section 3.4.3.2).

   The limits communicated via HTTP/2 SETTINGS apply to all WebTransport

   sessions opened on that HTTP/2 connection.  Limits communicated via

   the WebTransport-Init header field apply only to the WebTransport

   session established by the extended CONNECT request carrying that

   field.

   If both the SETTINGS and the header field are present when a

   WebTransport session is established, the endpoint MUST use the

   greater of the two values for each corresponding initial flow control

   value.  Endpoints sending the SETTINGS and also including the header

   field SHOULD ensure that the header field values are greater than or

   equal to the values provided in the SETTINGS.

3.4.3.1.  Flow Control SETTINGS

   Initial flow control limits can be exchanged via HTTP/2 SETTINGS

   (Section 9.1) by providing non-zero values for

   *  WT_MAX_DATA via SETTINGS_WEBTRANSPORT_INITIAL_MAX_DATA

Frindell, et al.        Expires 5 September 2024                [Page 8]



Internet-Draft               WebTransport-H2                  March 2024

   *  WT_MAX_STREAM_DATA via

      SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAM_DATA_UNI and

      SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAM_DATA_BIDI

   *  WT_MAX_STREAMS via SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAMS_UNI

      and SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAMS_BIDI

3.4.3.2.  Flow Control Header Field

   The WebTransport-Init HTTP header field can be used to communicate

   the initial values of the flow control windows, similar to how QUIC

   uses transport parameters.  The WebTransport-Init is a Dictionary

   Structured Field (Section 3.2 of [RFC8941]).  If any of the fields

   cannot be parsed correctly or do not have the correct type, the peer

   MUST reset the CONNECT stream.  The following keys are defined for

   the WebTransport-Init header field:

   u:  The initial flow control limit for unidirectional streams opened

      by the recipient of this header field.  MUST be an Integer.

   bl:  The initial flow control limit for the bidirectional streams

      opened by the sender of this header field.  MUST be an Integer.

   br:  The initial flow control limit for the bidirectional streams

      opened by the recipient of this header field.  MUST be an Integer.

3.4.4.  Flow Control and Intermediaries

   WebTransport over HTTP/2 uses several capsules for flow control, and

   all of these capsules define special intermediary handling as

   described in Section 3.2 of [HTTP-DATAGRAM].  These capsules,

   referred to as the "flow control capsules" are WT_MAX_DATA,

   WT_MAX_STREAM_DATA, WT_MAX_STREAMS, WT_DATA_BLOCKED,

   WT_STREAM_DATA_BLOCKED, and WT_STREAMS_BLOCKED.

   Because flow control in WebTransport is hop-by-hop and does not

   provide an end-to-end signal, intermediaries MUST consume flow

   control signals and express their own flow control limits to the next

   hop.  The intermediary can send these signals via HTTP/3 flow control

   messages, HTTP/2 flow control messages, or as WebTransport flow

   control capsules, where appropriate.  Intermediaries are responsible

   for storing any data for which they advertise flow control credit if

   that data cannot be immediately forwarded to the next hop.

   In practice, an intermediary that translates flow control signals

   between similar WebTransport protocols, such as between two HTTP/2

   connections, can often simply reexpress the same limits received on

   one connection directly on the other connection.

Frindell, et al.        Expires 5 September 2024                [Page 9]



Internet-Draft               WebTransport-H2                  March 2024

   An intermediary that does not want to be responsible for storing data

   that cannot be immediately sent on its translated connection would

   ensure that it does not advertise a higher flow control limit on one

   connection than the corresponding limit on the translated connection.

4.  WebTransport Features

   WebTransport over TCP-based HTTP semantics provides the following

   features described in [OVERVIEW]: unidirectional streams,

   bidirectional streams, and datagrams, initiated by either endpoint.

   WebTransport streams and datagrams that belong to different

   WebTransport sessions are identified by the CONNECT stream on which

   they are transmitted, with one WebTransport session consuming one

   CONNECT stream.

4.1.  Transport Properties

   The WebTransport framework [OVERVIEW] defines a set of optional

   transport properties that clients can use to determine the presence

   of features which might allow additional optimizations beyond the

   common set of properties available via all WebTransport protocols.

   Because WebTransport over TCP-based HTTP semantics relies on the

   underlying protocols to provide in order and reliable delivery, there

   are some notable differences from the way in which QUIC handles

   application data.  For example, endpoints send stream data in order.

   As there is no ordering mechanism available for the receiver to

   reassemble incoming data, receivers assume that all data arriving in

   WT_STREAM capsules is contiguous and in order.

   Below are details about support in WebTransport over HTTP/2 for the

   properties defined by the WebTransport framework.

   Stream Independence:  WebTransport over HTTP/2 does not support

      stream independence, as HTTP/2 inherently has head-of-line

      blocking.

   Partial Reliability:  WebTransport over HTTP/2 does not support

      partial reliability, as HTTP/2 retransmits any lost data.  This

      means that any datagrams sent via WebTransport over HTTP/2 will be

      retransmitted regardless of the preference of the application.

      The receiver is permitted to drop them, however, if it is unable

      to buffer them.

   Pooling Support:  WebTransport over HTTP/2 supports pooling, as

Frindell, et al.        Expires 5 September 2024               [Page 10]



Internet-Draft               WebTransport-H2                  March 2024

      multiple transports using WebTransport over HTTP/2 may share the

      same underlying HTTP/2 connection and therefore share a congestion

      controller and other transport context.  Note that WebTransport

      streams over HTTP/2 are contained within a single HTTP/2 stream

      and do not compete with other pooled WebTransport sessions for

      per-stream resources.

   Connection Mobility:  WebTransport over HTTP/2 does not support

      connection mobility, unless an underlying transport protocol that

      supports multipath or migration, such as MPTCP [MPTCP], is used

      underneath HTTP/2 and TLS.  Without such support, WebTransport

      over HTTP/2 connections cannot survive network transitions.

4.2.  WebTransport Streams

   WebTransport streams have identifiers and states that mirror the

   identifiers ((Section 2.1 of [RFC9000])) and states (Section 3 of

   [RFC9000]) of QUIC streams as closely as possible to aid in ease of

   implementation.

   WebTransport streams are identified by a numeric value, or stream ID.

   Stream IDs are only meaningful within the WebTransport session in

   which they were created.  They share the same semantics as QUIC

   stream IDs, with client initiated streams having even-numbered stream

   IDs and server-initiated streams having odd-numbered stream IDs.

   Similarly, they can be bidirectional or unidirectional, indicated by

   the second least significant bit of the stream ID.

   Because WebTransport does not provide an acknowledgement mechanism

   for WebTransport capsules, it relies on the underlying transport’s in

   order delivery to inform stream state transitions.  Wherever QUIC

   relies on receiving an ack for a packet to transition between stream

   states, WebTransport performs that transition immediately.

5.  WebTransport Capsules

   WebTransport capsules mirror their QUIC frame counterparts as closely

   as possible to enable maximal reuse of any applicable QUIC

   infrastructure by implementors.

   WebTransport capsules use the Capsule Protocol defined in Section 3.2

   of [HTTP-DATAGRAM].

Frindell, et al.        Expires 5 September 2024               [Page 11]



Internet-Draft               WebTransport-H2                  March 2024

5.1.  PADDING Capsule

   A PADDING capsule is an HTTP capsule [HTTP-DATAGRAM] of

   type=0x190B4D38 and has no semantic value.  PADDING capsules can be

   used to introduce additional data between other HTTP datagrams and

   can also be used to provide protection against traffic analysis or

   for other reasons.

   Note that, when used with WebTransport over HTTP/2, the PADDING

   capsule exists alongside the ability to pad HTTP/2 frames

   (Section 10.7 of [RFC9113]).  HTTP/2 padding is hop-by-hop and can be

   modified by intermediaries, while the PADDING capsule traverses

   intermedaries.  The PADDING capsule is also constrained to be no

   smaller than the capsule overhead itself.

   PADDING Capsule {

     Type (i) = 0x190B4D38,

     Length (i),

     Padding (..),

   }

                      Figure 1: PADDING Capsule Format

   The Padding field MUST be set to an all-zero sequence of bytes of any

   length as specified by the Length field.

5.2.  WT_RESET_STREAM Capsule

   A WT_RESET_STREAM capsule is an HTTP capsule [HTTP-DATAGRAM] of

   type=0x190B4D39 and allows either endpoint to abruptly terminate the

   sending part of a WebTransport stream.

   After sending a WT_RESET_STREAM capsule, an endpoint ceases

   transmission of WT_STREAM capsules on the identified stream.  A

   receiver of a WT_RESET_STREAM capsule can discard any data that it

   already received on that stream.

   WT_RESET_STREAM Capsule {

     Type (i) = 0x190B4D39,

     Length (i),

     Stream ID (i),

     Application Protocol Error Code (i),

   }

                  Figure 2: WT_RESET_STREAM Capsule Format

   The WT_RESET_STREAM capsule defines the following fields:

Frindell, et al.        Expires 5 September 2024               [Page 12]



Internet-Draft               WebTransport-H2                  March 2024

   Stream ID:  A variable-length integer encoding of the WebTransport

      stream ID of the stream being terminated.

   Application Protocol Error Code:  A variable-length integer

      containing the application protocol error code that indicates why

      the stream is being closed.

   Unlike the equivalent QUIC frame, this capsule does not include a

   Final Size field.  In-order delivery of WT_STREAM capsules ensures

   that the amount of session-level flow control consumed by a stream is

   always known by both endpoints.

5.3.  WT_STOP_SENDING Capsule

   An HTTP capsule [HTTP-DATAGRAM] called WT_STOP_SENDING

   (type=0x190B4D3A) is introduced to communicate that incoming data is

   being discarded on receipt per application request.  WT_STOP_SENDING

   requests that a peer cease transmission on a WebTransport stream.

   WT_STOP_SENDING Capsule {

     Type (i) = 0x190B4D3A,

     Length (i),

     Stream ID (i),

     Application Protocol Error Code (i),

   }

                  Figure 3: WT_STOP_SENDING Capsule Format

   The WT_STOP_SENDING capsule defines the following fields:

   Stream ID:  A variable-length integer carrying the WebTransport

      stream ID of the stream being ignored.

   Application Protocol Error Code:  A variable-length integer

      containing the application-specified reason the sender is ignoring

      the stream.

5.4.  WT_STREAM Capsule

   WT_STREAM capsules implicitly create a WebTransport stream and carry

   stream data.

   The Type field in the WT_STREAM capsule is either 0x190B4D3B or

   0x190B4D3C.  The least significant bit in the capsule type is the FIN

   bit (0x01), indicating when set that the capsule marks the end of the

   stream in one direction.  Stream data consists of any number of

   0x190B4D3B capsules followed by a terminal 0x190B4D3C capsule.

Frindell, et al.        Expires 5 September 2024               [Page 13]



Internet-Draft               WebTransport-H2                  March 2024

   WT_STREAM Capsule {

     Type (i) = 0x190B4D3B..0x190B4D3C,

     Length (i),

     Stream ID (i),

     Stream Data (..),

   }

                     Figure 4: WT_STREAM Capsule Format

   WT_STREAM capsules contain the following fields:

   Stream ID:  The stream ID for the stream.

   Stream Data:  Zero or more bytes of data for the stream.  Empty

      WT_STREAM capsules MUST NOT be used unless they open or close a

      stream; an endpoint MAY treat an empty WT_STREAM capsule that

      neither starts nor ends a stream as a session error.

5.5.  WT_MAX_DATA Capsule

   An HTTP capsule [HTTP-DATAGRAM] called WT_MAX_DATA (type=0x190B4D3D)

   is introduced to inform the peer of the maximum amount of data that

   can be sent on the WebTransport session as a whole.

   WT_MAX_DATA Capsule {

     Type (i) = 0x190B4D3D,

     Length (i),

     Maximum Data (i),

   }

                    Figure 5: WT_MAX_DATA Capsule Format

   WT_MAX_DATA capsules contain the following field:

   Maximum Data:  A variable-length integer indicating the maximum

      amount of data that can be sent on the entire connection, in units

      of bytes.

   All data sent in WT_STREAM capsules counts toward this limit.  The

   sum of the lengths of Stream Data fields in WT_STREAM capsules MUST

   NOT exceed the value advertised by a receiver.

   The WT_MAX_DATA capsule defines special intermediary handling, as

   described in Section 3.2 of [HTTP-DATAGRAM].  Intermedaries MUST

   consume WT_MAX_DATA capsules for flow control purposes and MUST

   generate and send appropriate flow control signals for their limits;

   see Section 3.4.4.

Frindell, et al.        Expires 5 September 2024               [Page 14]



Internet-Draft               WebTransport-H2                  March 2024

   The initial value for this limit MAY be communicated by sending a

   non-zero value for SETTINGS_WEBTRANSPORT_INITIAL_MAX_DATA.

5.6.  WT_MAX_STREAM_DATA Capsule

   An HTTP capsule [HTTP-DATAGRAM] called WT_MAX_STREAM_DATA

   (type=0x190B4D3E) is introduced to inform a peer of the maximum

   amount of data that can be sent on a WebTransport stream.

   WT_MAX_STREAM_DATA Capsule {

     Type (i) = 0x190B4D3E,

     Length (i),

     Stream ID (i),

     Maximum Stream Data (i),

   }

                Figure 6: WT_MAX_STREAM_DATA Capsule Format

   WT_MAX_STREAM_DATA capsules contain the following fields:

   Stream ID:  The stream ID of the affected WebTransport stream,

      encoded as a variable-length integer.

   Maximum Stream Data:  A variable-length integer indicating the

      maximum amount of data that can be sent on the identified stream,

      in units of bytes.

   All data sent in WT_STREAM capsules for the identified stream counts

   toward this limit.  The sum of the lengths of Stream Data fields in

   WT_STREAM capsules on the identified stream MUST NOT exceed the value

   advertised by a receiver.

   The WT_MAX_STREAM_DATA capsule defines special intermediary handling,

   as described in Section 3.2 of [HTTP-DATAGRAM].  Intermedaries MUST

   consume WT_MAX_STREAM_DATA capsules for flow control purposes and

   MUST generate and send appropriate flow control signals for their

   limits; see Section 3.4.4.

   Initial values for this limit for unidirectional and bidirectional

   streams MAY be communicated by sending non-zero values for

   SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAM_DATA_UNI and

   SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAM_DATA_BIDI respectively.

Frindell, et al.        Expires 5 September 2024               [Page 15]



Internet-Draft               WebTransport-H2                  March 2024

5.7.  WT_MAX_STREAMS Capsule

   An HTTP capsule [HTTP-DATAGRAM] called WT_MAX_STREAMS is introduced

   to inform the peer of the cumulative number of streams of a given

   type it is permitted to open.  A WT_MAX_STREAMS capsule with a type

   of 0x190B4D3F applies to bidirectional streams, and a WT_MAX_STREAMS

   capsule with a type of 0x190B4D40 applies to unidirectional streams.

   Note that, because Maximum Streams is a cumulative value representing

   the total allowed number of streams, including previously closed

   streams, endpoints repeatedly send new WT_MAX_STREAMS capsules with

   increasing Maximum Streams values as streams are opened.

   WT_MAX_STREAMS Capsule {

     Type (i) = 0x190B4D3F..0x190B4D40,

     Length (i),

     Maximum Streams (i),

   }

                  Figure 7: WT_MAX_STREAMS Capsule Format

   WT_MAX_STREAMS capsules contain the following field:

   Maximum Streams:  A count of the cumulative number of streams of the

      corresponding type that can be opened over the lifetime of the

      connection.  This value cannot exceed 2^60, as it is not possible

      to encode stream IDs larger than 2^62-1.

   An endpoint MUST NOT open more streams than permitted by the current

   stream limit set by its peer.  For instance, a server that receives a

   unidirectional stream limit of 3 is permitted to open streams 3, 7,

   and 11, but not stream 15.

   Note that this limit includes streams that have been closed as well

   as those that are open.

   The WT_MAX_STREAMS capsule defines special intermediary handling, as

   described in Section 3.2 of [HTTP-DATAGRAM].  Intermedaries MUST

   consume WT_MAX_STREAMS capsules for flow control purposes and MUST

   generate and send appropriate flow control signals for their limits.

   Initial values for these limits MAY be communicated by sending non-

   zero values for SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAMS_UNI and

   SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAMS_BIDI.

Frindell, et al.        Expires 5 September 2024               [Page 16]



Internet-Draft               WebTransport-H2                  March 2024

5.8.  WT_DATA_BLOCKED Capsule

   A sender SHOULD send a WT_DATA_BLOCKED capsule (type=0x190B4D41) when

   it wishes to send data but is unable to do so due to WebTransport

   session-level flow control.  WT_DATA_BLOCKED capsules can be used as

   input to tuning of flow control algorithms.

   WT_DATA_BLOCKED Capsule {

     Type (i) = 0x190B4D41,

     Length (i),

     Maximum Data (i),

   }

                  Figure 8: WT_DATA_BLOCKED Capsule Format

   WT_DATA_BLOCKED capsules contain the following field:

   Maximum Data:  A variable-length integer indicating the session-level

      limit at which blocking occurred.

   The WT_DATA_BLOCKED capsule defines special intermediary handling, as

   described in Section 3.2 of [HTTP-DATAGRAM].  Intermedaries MUST

   consume WT_DATA_BLOCKED capsules for flow control purposes and MUST

   generate and send appropriate flow control signals for their limits;

   see Section 3.4.4.

5.9.  WT_STREAM_DATA_BLOCKED Capsule

   A sender SHOULD send a WT_STREAM_DATA_BLOCKED capsule

   (type=0x190B4D42) when it wishes to send data but is unable to do so

   due to stream-level flow control.  This capsule is analogous to

   WT_DATA_BLOCKED.

   WT_STREAM_DATA_BLOCKED Capsule {

     Type (i) = 0x190B4D42,

     Length (i),

     Stream ID (i),

     Maximum Stream Data (i),

   }

              Figure 9: WT_STREAM_DATA_BLOCKED Capsule Format

   WT_STREAM_DATA_BLOCKED capsules contain the following fields:

   Stream ID:  A variable-length integer indicating the WebTransport

      stream that is blocked due to flow control.

   Maximum Stream Data:  A variable-length integer indicating the offset

Frindell, et al.        Expires 5 September 2024               [Page 17]



Internet-Draft               WebTransport-H2                  March 2024

      of the stream at which the blocking occurred.

   The WT_STREAM_DATA_BLOCKED capsule defines special intermediary

   handling, as described in Section 3.2 of [HTTP-DATAGRAM].

   Intermedaries MUST consume WT_STREAM_DATA_BLOCKED capsules for flow

   control purposes and MUST generate and send appropriate flow control

   signals for their limits; see Section 3.4.4.

5.10.  WT_STREAMS_BLOCKED Capsule

   A sender SHOULD send a WT_STREAMS_BLOCKED capsule (type=0x190B4D43 or

   0x190B4D44) when it wishes to open a stream but is unable to do so

   due to the maximum stream limit set by its peer.  A

   WT_STREAMS_BLOCKED capsule of type 0x190B4D43 is used to indicate

   reaching the bidirectional stream limit, and a STREAMS_BLOCKED

   capsule of type 0x190B4D44 is used to indicate reaching the

   unidirectional stream limit.

   A WT_STREAMS_BLOCKED capsule does not open the stream, but informs

   the peer that a new stream was needed and the stream limit prevented

   the creation of the stream.

   WT_STREAMS_BLOCKED Capsule {

     Type (i) = 0x190B4D43..0x190B4D44,

     Length (i),

     Maximum Streams (i),

   }

                Figure 10: WT_STREAMS_BLOCKED Capsule Format

   WT_STREAMS_BLOCKED capsules contain the following field:

   Maximum Streams:  A variable-length integer indicating the maximum

      number of streams allowed at the time the capsule was sent.  This

      value cannot exceed 2^60, as it is not possible to encode stream

      IDs larger than 2^62-1.

   The WT_STREAMS_BLOCKED capsule defines special intermediary handling,

   as described in Section 3.2 of [HTTP-DATAGRAM].  Intermedaries MUST

   consume WT_STREAMS_BLOCKED capsules for flow control purposes and

   MUST generate and send appropriate flow control signals for their

   limits.

5.11.  DATAGRAM Capsule

   WebTransport over HTTP/2 uses the DATAGRAM capsule defined in

   Section 3.5 of [HTTP-DATAGRAM] to carry datagram traffic.

Frindell, et al.        Expires 5 September 2024               [Page 18]



Internet-Draft               WebTransport-H2                  March 2024

   DATAGRAM Capsule {

     Type (i) = 0x00,

     Length (i),

     HTTP Datagram Payload (..),

   }

                     Figure 11: DATAGRAM Capsule Format

   When used in WebTransport over HTTP/2, DATAGRAM capsules contain the

   following fields:

   HTTP Datagram Payload:  The content of the datagram to be delivered.

   The data in DATAGRAM capsules is not subject to flow control.  The

   receiver MAY discard this data if it does not have sufficient space

   to buffer it.

   An intermediary could forward the data in a DATAGRAM capsule over

   another protocol, such as WebTransport over HTTP/3.  In QUIC, a

   datagram frame can span at most one packet.  Because of that, the

   applications have to know the maximum size of the datagram they can

   send.  However, when proxying the datagrams, the hop-by-hop MTUs can

   vary.

   Section 3.5 of [HTTP-DATAGRAM] indicates that intermediaries that

   forward DATAGRAM capsules where QUIC datagrams [DATAGRAM] are

   available forward the contents of the capsule as native QUIC

   datagrams, rather than as HTTP datagrams in a DATAGRAM capsule.

   Similarly, when forwarding DATAGRAM capsules used as part of a

   WebTransport over HTTP/2 session on a WebTransport session that

   natively supports QUIC datagrams, such as WebTransport over HTTP/3

   [WEBTRANSPORT-H3], intermediaries follow the requirements in

   [WEBTRANSPORT-H3] to use native QUIC datagrams.

5.12.  CLOSE_WEBTRANSPORT_SESSION Capsule

   WebTransport over HTTP/2 uses the CLOSE_WEBTRANSPORT_SESSION capsule

   defined in Section 5 of [WEBTRANSPORT-H3] to terminate a WebTransport

   session with an application error code and message.

   WebTransport sessions can be terminated by optionally sending a

   CLOSE_WEBTRANSPORT_SESSION capsule and then by closing the HTTP/2

   stream associated with the session (see Section 7).

Frindell, et al.        Expires 5 September 2024               [Page 19]



Internet-Draft               WebTransport-H2                  March 2024

   CLOSE_WEBTRANSPORT_SESSION Capsule {

     Type (i) = CLOSE_WEBTRANSPORT_SESSION,

     Length (i),

     Application Error Code (32),

     Application Error Message (..8192),

   }

            Figure 12: CLOSE_WEBTRANSPORT_SESSION Capsule Format

   When used in WebTransport over HTTP/2, CLOSE_WEBTRANSPORT_SESSION

   capsules contain the following fields:

   Application Error Code:  A 32-bit error code provided by the

      application closing the connection.

   Application Error Message:  A UTF-8 encoded error message string

      provided by the application closing the connection.  The message

      takes up the remainder of the capsule, and its length MUST NOT

      exceed 1024 bytes.

   An endpoint that sends a CLOSE_WEBTRANSPORT_SESSION capsule MUST set

   the FIN bit on the frame carrying the capsule.  The recipient MUST

   close the stream upon receipt of the capsule.

   Cleanly terminating a WebTransport session without a

   CLOSE_WEBTRANSPORT_SESSION capsule is semantically equivalent to

   terminating it with a CLOSE_WEBTRANSPORT_SESSION capsule that has an

   error code of 0 and an empty error string.

5.13.  DRAIN_WEBTRANSPORT_SESSION Capsule

   HTTP/2 uses GOAWAY frames (Section 6.8 of [HTTP2]) to allow an

   endpoint to gracefully stop accepting new streams while still

   finishing processing of previously established streams.

   WebTransport over HTTP/2 uses the DRAIN_WEBTRANSPORT_SESSION capsule

   defined in Section 4.6 of [WEBTRANSPORT-H3] to gracefully shut down a

   WebTransport session.

   DRAIN_WEBTRANSPORT_SESSION Capsule {

     Type (i) = DRAIN_WEBTRANSPORT_SESSION,

     Length (i) = 0

   }

            Figure 13: DRAIN_WEBTRANSPORT_SESSION Capsule Format

Frindell, et al.        Expires 5 September 2024               [Page 20]



Internet-Draft               WebTransport-H2                  March 2024

   After sending or receiving either a DRAIN_WEBTRANSPORT_SESSION

   capsule or HTTP/2 GOAWAY frame, an endpoint MAY continue using the

   session and MAY open new WebTransport streams.  The signal is

   intended for the application using WebTransport, which is expected to

   attempt to gracefully terminate the session as soon as possible.

6.  Examples

   An example of negotiating a WebTransport Stream on an HTTP/2

   connection follows.  This example is intended to closely follow the

   example in Section 5.1 of [RFC8441] to help illustrate the

   differences defined in this document.

[[ From Client ]]                   [[ From Server ]]

SETTINGS

SETTINGS_ENABLE_CONNECT_PROTOCOL = 1

SETTINGS_WEBTRANSPORT_MAX_SESSIONS = 1

                                    SETTINGS

                                    SETTINGS_ENABLE_CONNECT_PROTOCOL = 1

                                    SETTINGS_WEBTRANSPORT_MAX_SESSIONS = 100

HEADERS + END_HEADERS

Stream ID = 3

:method = CONNECT

:protocol = webtransport

:scheme = https

:path = /

:authority = server.example.com

origin: server.example.com

                                    HEADERS + END_HEADERS

                                    Stream ID = 3

                                    :status = 200

WT_STREAM

Stream ID = 0

WebTransport Data

                                    WT_STREAM + FIN

                                    Stream ID = 0

                                    WebTransport Data

WT_STREAM + FIN

Stream ID = 0

WebTransport Data

Frindell, et al.        Expires 5 September 2024               [Page 21]



Internet-Draft               WebTransport-H2                  March 2024

   An example of the server initiating a WebTransport Stream follows.

   The only difference here is the endpoint that sends the first

   WT_STREAM capsule.

[[ From Client ]]                   [[ From Server ]]

SETTINGS

SETTINGS_ENABLE_CONNECT_PROTOCOL = 1

SETTINGS_WEBTRANSPORT_MAX_SESSIONS = 1

                                    SETTINGS

                                    SETTINGS_ENABLE_CONNECT_PROTOCOL = 1

                                    SETTINGS_WEBTRANSPORT_MAX_SESSIONS = 100

HEADERS + END_HEADERS

Stream ID = 3

:method = CONNECT

:protocol = webtransport

:scheme = https

:path = /

:authority = server.example.com

origin: server.example.com

                                    HEADERS + END_HEADERS

                                    Stream ID = 3

                                    :status = 200

                                    WT_STREAM

                                    Stream ID = 1

                                    WebTransport Data

WT_STREAM + FIN

Stream ID = 1

WebTransport Data

                                    WT_STREAM + FIN

                                    Stream ID = 1

                                    WebTransport Data

7.  Session Termination

   An WebTransport session over HTTP/2 is terminated when either

   endpoint closes the stream associated with the CONNECT request that

   initiated the session.  Upon learning about the session being

   terminated, the endpoint MUST stop sending new datagrams and reset

   all of the streams associated with the session.

Frindell, et al.        Expires 5 September 2024               [Page 22]



Internet-Draft               WebTransport-H2                  March 2024

   Prior to closing the stream associated with the CONNECT request,

   either endpoint can send a CLOSE_WEBTRANSPORT_SESSION capsule with an

   application error code and message to convey additional information

   about the reasons for the closure of the session.

8.  Security Considerations

   WebTransport over HTTP/2 satisfies all of the security requirements

   imposed by [OVERVIEW] on WebTransport protocols, thus providing a

   secure framework for client-server communication in cases when the

   client is potentially untrusted.

   WebTransport over HTTP/2 requires explicit opt-in through the use of

   HTTP SETTINGS; this avoids potential protocol confusion attacks by

   ensuring the HTTP/2 server explicitly supports it.  It also requires

   the use of the Origin header, providing the server with the ability

   to deny access to Web-based clients that do not originate from a

   trusted origin.

   Just like HTTP traffic going over HTTP/2, WebTransport pools traffic

   to different origins within a single connection.  Different origins

   imply different trust domains, meaning that the implementations have

   to treat each transport as potentially hostile towards others on the

   same connection.  One potential attack is a resource exhaustion

   attack: since all of the transports share both congestion control and

   flow control context, a single client aggressively using up those

   resources can cause other transports to stall.  The user agent thus

   SHOULD implement a fairness scheme that ensures that each transport

   within connection gets a reasonable share of controlled resources;

   this applies both to sending data and to opening new streams.

9.  IANA Considerations

9.1.  HTTP/2 SETTINGS Parameter Registration

   The following entries are added to the "HTTP/2 Settings" registry

   established by [RFC7540]:

   The SETTINGS_WEBTRANSPORT_MAX_SESSIONS parameter indicates that the

   specified HTTP/2 connection is WebTransport-capable and the number of

   concurrent sessions an endpoint is willing to receive.  The default

   value for the SETTINGS_WEBTRANSPORT_MAX_SESSIONS parameter is "0",

   meaning that the endpoint is not willing to receive any WebTransport

   sessions.

   Setting Name:  WEBTRANSPORT_MAX_SESSIONS

   Value:  0x2b60

Frindell, et al.        Expires 5 September 2024               [Page 23]



Internet-Draft               WebTransport-H2                  March 2024

   Default:  0

   Specification:  This document

   The SETTINGS_WEBTRANSPORT_INITIAL_MAX_DATA parameter indicates the

   initial value for the session data limit, otherwise communicated by

   the WT_MAX_DATA capsule (see Section 5.5).  The default value for the

   SETTINGS_WEBTRANSPORT_INITIAL_MAX_DATA parameter is "0", indicating

   that the endpoint needs to send a WT_MAX_DATA capsule within each

   session before its peer is allowed to send any stream data within

   that session.

   Note that this limit applies to all WebTransport sessions that use

   the HTTP/2 connection on which this SETTING is sent.

   Setting Name:  SETTINGS_WEBTRANSPORT_INITIAL_MAX_DATA

   Value:  0x2b61

   Default:  0

   Specification:  This document

   The SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAM_DATA_UNI parameter

   indicates the initial value for the stream data limit for incoming

   unidirectional streams, otherwise communicated by the

   WT_MAX_STREAM_DATA capsule (see Section 5.6).  The default value for

   the SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAM_DATA_UNI parameter is

   "0", indicating that the endpoint needs to send WT_MAX_STREAM_DATA

   capsules for each stream within each individual WebTransport session

   before its peer is allowed to send any stream data on those streams.

   Note that this limit applies to all WebTransport streams on all

   sessions that use the HTTP/2 connection on which this SETTING is

   sent.

   Setting Name:  SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAM_DATA_UNI

   Value:  0x2b62

   Default:  0

   Specification:  This document

   The SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAM_DATA_BIDI parameter

   indicates the initial value for the stream data limit for incoming

   data on bidirectional streams, otherwise communicated by the

   WT_MAX_STREAM_DATA capsule (see Section 5.6).  The default value for

Frindell, et al.        Expires 5 September 2024               [Page 24]



Internet-Draft               WebTransport-H2                  March 2024

   the SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAM_DATA_BIDI parameter is

   "0", indicating that the endpoint needs to send WT_MAX_STREAM_DATA

   capsules for each stream within each individual WebTransport session

   before its peer is allowed to send any stream data on those streams.

   Note that this limit applies to all WebTransport streams on all

   sessions that use the HTTP/2 connection on which this SETTING is

   sent.

   Setting Name:  SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAM_DATA_BIDI

   Value:  0x2b63

   Default:  0

   Specification:  This document

   The SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAMS_UNI parameter indicates

   the initial value for the unidirectional max stream limit, otherwise

   communicated by the WT_MAX_STREAMS capsule (see Section 5.7).  The

   default value for the SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAMS_UNI

   parameter is "0", indicating that the endpoint needs to send

   WT_MAX_STREAMS capsules on each individual WebTransport session

   before its peer is allowed to create any unidirectional streams

   within that session.

   Note that this limit applies to all WebTransport sessions that use

   the HTTP/2 connection on which this SETTING is sent.

   Setting Name:  SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAMS_UNI

   Value:  0x2b64

   Default:  0

   Specification:  This document

   The SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAMS_BIDI parameter

   indicates the initial value for the bidirectional max stream limit,

   otherwise communicated by the WT_MAX_STREAMS capsule (see

   Section 5.7).  The default value for the

   SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAMS_BIDI parameter is "0",

   indicating that the endpoint needs to send WT_MAX_STREAMS capsules on

   each individual WebTransport session before its peer is allowed to

   create any bidirectional streams within that session.

   Note that this limit applies to all WebTransport sessions that use

   the HTTP/2 connection on which this SETTING is sent.

Frindell, et al.        Expires 5 September 2024               [Page 25]



Internet-Draft               WebTransport-H2                  March 2024

   Setting Name:  SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAMS_BIDI

   Value:  0x2b65

   Default:  0

   Specification:  This document

9.2.  Capsule Types

   The following entries are added to the "HTTP Capsule Types" registry

   established by [HTTP-DATAGRAM]:

   The PADDING capsule.

   Value:  0x190B4D38

   Capsule Type:  PADDING

   Status:  permanent

   Specification:  This document

   Change Controller:  IETF

   Contact:  WebTransport Working Group webtransport@ietf.org

      (mailto:webtransport@ietf.org)

   Notes:  None

   The WT_RESET_STREAM capsule.

   Value:  0x190B4D39

   Capsule Type:  WT_RESET_STREAM

   Status:  permanent

   Specification:  This document

   Change Controller:  IETF

   Contact:  WebTransport Working Group webtransport@ietf.org

      (mailto:webtransport@ietf.org)

   Notes:  None

   The WT_STOP_SENDING capsule.

   Value:  0x190B4D3A

   Capsule Type:  WT_STOP_SENDING

   Status:  permanent

   Specification:  This document

   Change Controller:  IETF

   Contact:  WebTransport Working Group webtransport@ietf.org

      (mailto:webtransport@ietf.org)

   Notes:  None

   The WT_STREAM capsule.

Frindell, et al.        Expires 5 September 2024               [Page 26]



Internet-Draft               WebTransport-H2                  March 2024

   Value:  0x190B4D3B..0x190B4D3C

   Capsule Type:  WT_STREAM

   Status:  permanent

   Specification:  This document

   Change Controller:  IETF

   Contact:  WebTransport Working Group webtransport@ietf.org

      (mailto:webtransport@ietf.org)

   Notes:  None

   The WT_MAX_DATA capsule.

   Value:  0x190B4D3D

   Capsule Type:  WT_MAX_DATA

   Status:  permanent

   Specification:  This document

   Change Controller:  IETF

   Contact:  WebTransport Working Group webtransport@ietf.org

      (mailto:webtransport@ietf.org)

   Notes:  None

   The WT_MAX_STREAM_DATA capsule.

   Value:  0x190B4D3E

   Capsule Type:  WT_MAX_STREAM_DATA

   Status:  permanent

   Specification:  This document

   Change Controller:  IETF

   Contact:  WebTransport Working Group webtransport@ietf.org

      (mailto:webtransport@ietf.org)

   Notes:  None

   The WT_MAX_STREAMS capsule.

   Value:  0x190B4D3F..0x190B4D40

   Capsule Type:  WT_MAX_STREAMS

   Status:  permanent

   Specification:  This document

   Change Controller:  IETF

   Contact:  WebTransport Working Group webtransport@ietf.org

      (mailto:webtransport@ietf.org)

   Notes:  None

   The WT_DATA_BLOCKED capsule.

   Value:  0x190B4D41

   Capsule Type:  WT_DATA_BLOCKED

   Status:  permanent

   Specification:  This document

Frindell, et al.        Expires 5 September 2024               [Page 27]



Internet-Draft               WebTransport-H2                  March 2024

   Change Controller:  IETF

   Contact:  WebTransport Working Group webtransport@ietf.org

      (mailto:webtransport@ietf.org)

   Notes:  None

   The WT_STREAM_DATA_BLOCKED capsule.

   Value:  0x190B4D42

   Capsule Type:  WT_STREAM_DATA_BLOCKED

   Status:  permanent

   Specification:  This document

   Change Controller:  IETF

   Contact:  WebTransport Working Group webtransport@ietf.org

      (mailto:webtransport@ietf.org)

   Notes:  None

   The WT_STREAMS_BLOCKED capsule.

   Value:  0x190B4D43..0x190B4D44

   Capsule Type:  WT_STREAMS_BLOCKED

   Status:  permanent

   Specification:  This document

   Change Controller:  IETF

   Contact:  WebTransport Working Group webtransport@ietf.org

      (mailto:webtransport@ietf.org)

   Notes:  None

9.3.  HTTP Header Field Name

   IANA will register the following entry in the "Hypertext Transfer

   Protocol (HTTP) Field Name Registry" maintained at

   https://www.iana.org/assignments/http-fields

   (https://www.iana.org/assignments/http-fields):

   Field Name:  WebTransport-Init

   Template:  None

   Status:  permanent

   Reference:  This document

   Comments:  None

10.  References

10.1.  Normative References

Frindell, et al.        Expires 5 September 2024               [Page 28]



Internet-Draft               WebTransport-H2                  March 2024

   [HTTP]     Fielding, R. T., Nottingham, M., and J. Reschke, "HTTP

              Semantics", Work in Progress, Internet-Draft, draft-ietf-

              httpbis-semantics-19, 12 September 2021,

              <https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-

              semantics-19>.

   [HTTP-DATAGRAM]

              Schinazi, D. and L. Pardue, "HTTP Datagrams and the

              Capsule Protocol", RFC 9297, DOI 10.17487/RFC9297, August

              2022, <https://www.rfc-editor.org/rfc/rfc9297>.

   [HTTP2]    Thomson, M., Ed. and C. Benfield, Ed., "HTTP/2", RFC 9113,

              DOI 10.17487/RFC9113, June 2022,

              <https://www.rfc-editor.org/rfc/rfc9113>.

   [ORIGIN]   Barth, A., "The Web Origin Concept", RFC 6454,

              DOI 10.17487/RFC6454, December 2011,

              <https://www.rfc-editor.org/rfc/rfc6454>.

   [OVERVIEW] Vasiliev, V., "The WebTransport Protocol Framework", Work

              in Progress, Internet-Draft, draft-ietf-webtrans-overview-

              07, 4 March 2024, <https://datatracker.ietf.org/doc/html/

              draft-ietf-webtrans-overview-07>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate

              Requirement Levels", BCP 14, RFC 2119,

              DOI 10.17487/RFC2119, March 1997,

              <https://www.rfc-editor.org/rfc/rfc2119>.

   [RFC6585]  Nottingham, M. and R. Fielding, "Additional HTTP Status

              Codes", RFC 6585, DOI 10.17487/RFC6585, April 2012,

              <https://www.rfc-editor.org/rfc/rfc6585>.

   [RFC7230]  Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer

              Protocol (HTTP/1.1): Message Syntax and Routing",

              RFC 7230, DOI 10.17487/RFC7230, June 2014,

              <https://www.rfc-editor.org/rfc/rfc7230>.

   [RFC7540]  Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

              Transfer Protocol Version 2 (HTTP/2)", RFC 7540,

              DOI 10.17487/RFC7540, May 2015,

              <https://www.rfc-editor.org/rfc/rfc7540>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

              May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Frindell, et al.        Expires 5 September 2024               [Page 29]



Internet-Draft               WebTransport-H2                  March 2024

   [RFC8441]  McManus, P., "Bootstrapping WebSockets with HTTP/2",

              RFC 8441, DOI 10.17487/RFC8441, September 2018,

              <https://www.rfc-editor.org/rfc/rfc8441>.

   [RFC8941]  Nottingham, M. and P. Kamp, "Structured Field Values for

              HTTP", RFC 8941, DOI 10.17487/RFC8941, February 2021,

              <https://www.rfc-editor.org/rfc/rfc8941>.

   [RFC9000]  Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

              Multiplexed and Secure Transport", RFC 9000,

              DOI 10.17487/RFC9000, May 2021,

              <https://www.rfc-editor.org/rfc/rfc9000>.

   [RFC9110]  Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

              Ed., "HTTP Semantics", STD 97, RFC 9110,

              DOI 10.17487/RFC9110, June 2022,

              <https://www.rfc-editor.org/rfc/rfc9110>.

   [RFC9113]  Thomson, M., Ed. and C. Benfield, Ed., "HTTP/2", RFC 9113,

              DOI 10.17487/RFC9113, June 2022,

              <https://www.rfc-editor.org/rfc/rfc9113>.

   [SEMANTICS]

              Fielding, R. T., Nottingham, M., and J. Reschke, "HTTP

              Semantics", Work in Progress, Internet-Draft, draft-ietf-

              httpbis-semantics-19, 12 September 2021,

              <https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-

              semantics-19>.

   [WEBTRANSPORT-H3]

              Frindell, A., Kinnear, E., and V. Vasiliev, "WebTransport

              over HTTP/3", Work in Progress, Internet-Draft, draft-

              ietf-webtrans-http3-08, 23 October 2023,

              <https://datatracker.ietf.org/doc/html/draft-ietf-

              webtrans-http3-08>.

10.2.  Informative References

   [DATAGRAM] Pauly, T., Kinnear, E., and D. Schinazi, "An Unreliable

              Datagram Extension to QUIC", RFC 9221,

              DOI 10.17487/RFC9221, March 2022,

              <https://www.rfc-editor.org/rfc/rfc9221>.

   [HTTP3]    Bishop, M., "HTTP/3", Work in Progress, Internet-Draft,

              draft-ietf-quic-http-34, 2 February 2021,

              <https://datatracker.ietf.org/doc/html/draft-ietf-quic-

              http-34>.

Frindell, et al.        Expires 5 September 2024               [Page 30]



Internet-Draft               WebTransport-H2                  March 2024

   [MPTCP]    Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,

              "TCP Extensions for Multipath Operation with Multiple

              Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,

              <https://www.rfc-editor.org/rfc/rfc6824>.

   [QUIC]     Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

              Multiplexed and Secure Transport", RFC 9000,

              DOI 10.17487/RFC9000, May 2021,

              <https://www.rfc-editor.org/rfc/rfc9000>.

Acknowledgments

   Thanks to Anthony Chivetta, Joshua Otto, and Valentin Pistol for

   their contributions in the design and implementation of this work.

Index

   P S W

      P

         PADDING  Section 5.1, Paragraph 1; Section 5.1, Paragraph 2;

            Section 9.2, Paragraph 3.4.1

      S

         SETTINGS_WEBTRANSPORT_INITIAL_MAX_DATA  Section 3.4.3.1,

            Paragraph 2.1.1; Section 5.5, Paragraph 7; Section 9.1,

            Paragraph 4; Section 9.1, Paragraph 6.2.1

         SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAM_DATA_BIDI  Section 3.4

            .3.1, Paragraph 2.2.1; Section 5.6, Paragraph 7;

            Section 9.1, Paragraph 10; Section 9.1, Paragraph 12.2.1

         SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAM_DATA_UNI  Section 3.4.

            3.1, Paragraph 2.2.1; Section 5.6, Paragraph 7; Section 9.1,

            Paragraph 7; Section 9.1, Paragraph 9.2.1

         SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAMS_BIDI  Section 3.4.3.1

            , Paragraph 2.3.1; Section 5.7, Paragraph 9; Section 9.1,

            Paragraph 16; Section 9.1, Paragraph 18.2.1

         SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAMS_UNI  Section 3.4.3.1,

            Paragraph 2.3.1; Section 5.7, Paragraph 9; Section 9.1,

            Paragraph 13; Section 9.1, Paragraph 15.2.1

      W

         WT_DATA_BLOCKED  Section 2, Paragraph 8; Section 3.4.4,

            Paragraph 1; Section 5.8, Paragraph 1; Section 5.8,

            Paragraph 3; Section 5.8, Paragraph 5; Section 5.9,

            Paragraph 1; Section 9.2, Paragraph 17.4.1

Frindell, et al.        Expires 5 September 2024               [Page 31]



Internet-Draft               WebTransport-H2                  March 2024

         WT_MAX_DATA  Section 2, Paragraph 8; Section 3.4.3.1, Paragraph

            2.1.1; Section 3.4.4, Paragraph 1; Section 5.5, Paragraph 1;

            Section 5.5, Paragraph 3; Section 5.5, Paragraph 6;

            Section 9.1, Paragraph 4; Section 9.2, Paragraph 11.4.1

         WT_MAX_STREAM_DATA  Section 2, Paragraph 8; Section 3.4.3.1,

            Paragraph 2.2.1; Section 3.4.4, Paragraph 1; Section 5.6,

            Paragraph 1; Section 5.6, Paragraph 3; Section 5.6,

            Paragraph 6; Section 9.1, Paragraph 7; Section 9.1,

            Paragraph 10; Section 9.2, Paragraph 13.4.1

         WT_MAX_STREAMS  Section 2, Paragraph 8; Section 3.4.2,

            Paragraph 1; Section 3.4.3.1, Paragraph 2.3.1;

            Section 3.4.4, Paragraph 1; Section 5.7, Paragraph 1;

            Section 5.7, Paragraph 2; Section 5.7, Paragraph 4;

            Section 5.7, Paragraph 8; Section 9.1, Paragraph 13;

            Section 9.1, Paragraph 16; Section 9.2, Paragraph 15.4.1

         WT_RESET_STREAM  Section 2, Paragraph 9; Section 5.2, Paragraph

            1; Section 5.2, Paragraph 2; Section 5.2, Paragraph 4;

            Section 9.2, Paragraph 5.4.1

         WT_STOP_SENDING  Section 2, Paragraph 9; Section 5.3, Paragraph

            1; Section 5.3, Paragraph 3; Section 9.2, Paragraph 7.4.1

         WT_STREAM  Section 2, Paragraph 7.1.1; Section 4.1, Paragraph

            2; Section 5.2, Paragraph 2; Section 5.2, Paragraph 6;

            Section 5.4, Paragraph 1; Section 5.4, Paragraph 2;

            Section 5.4, Paragraph 4; Section 5.4, Paragraph 5.4.1;

            Section 5.5, Paragraph 5; Section 5.6, Paragraph 5;

            Section 6, Paragraph 3; Section 9.2, Paragraph 9.4.1

         WT_STREAM_DATA_BLOCKED  Section 2, Paragraph 8; Section 3.4.4,

            Paragraph 1; Section 5.9, Paragraph 1; Section 5.9,

            Paragraph 3; Section 5.9, Paragraph 5; Section 9.2,

            Paragraph 19.4.1

         WT_STREAMS_BLOCKED  Section 2, Paragraph 8; Section 3.4.4,

            Paragraph 1; Section 5.10, Paragraph 1; Section 5.10,

            Paragraph 2; Section 5.10, Paragraph 4; Section 5.10,

            Paragraph 6; Section 9.2, Paragraph 21.4.1

Authors’ Addresses

   Alan Frindell

   Facebook Inc.

   Email: afrind@fb.com

   Eric Kinnear

   Apple Inc.

   One Apple Park Way

   Cupertino, California 95014,

   United States of America

   Email: ekinnear@apple.com

Frindell, et al.        Expires 5 September 2024               [Page 32]



Internet-Draft               WebTransport-H2                  March 2024

   Tommy Pauly

   Apple Inc.

   One Apple Park Way

   Cupertino, California 95014,

   United States of America

   Email: tpauly@apple.com

   Martin Thomson

   Mozilla

   Email: mt@lowentropy.net

   Victor Vasiliev

   Google

   Email: vasilvv@google.com

   Guowu Xie

   Facebook Inc.

   Email: woo@fb.com

Frindell, et al.        Expires 5 September 2024               [Page 33]


