Limits on Sending and Processing IPv6 Extensions Headers

draft-herbert-6man-eh-limits-00

Tom Herbert <tom@sipanda.io>

Problem

- Deployment and support for IPv6 extension headers in the Internet is underwhelming
- A major reason that is that TLVs and VLHs are hard to process efficiently especially in hardware
- Problem exasperated by the fact that there few limits on the usage extension headers

To save extension headers, we need to limit them!

Solution

- Specify a set of limits that may be applied to various aspects for sending and receiving extension header
- Goals
 - Define practical limits to promote efficient and feasible implementation
 - Don't restrict functionality in extension headers to the point that they no longer useful!

Related work

- **RFC7045**: Cannot rely on routers to process HbH
- **RFC7872**: measurements on extension header drops
- draft-ietf-v6ops-ipv6-ehs-packet-drops: Provides some reasons why nodes may drop packets with EH
- **RFC8883**: ICMP errors when discarding packets due to processing limits being exceed
- **RFC8504**: limits on EH for hosts
- draft-hinden-6man-hbh-processing: specific limit on HbH options
- **RFC9000**: QUIC limits EH to 32 bytes for initial packets

Amended Robust Principle

- Be conservative in what you send
- Liberal in what you receive
- If you possess explicit knowledge of receivers, you can be less conservative, more liberal, in what you send

Types of limits

- Limits on processing of extension headers
- Limits on length of the IPv6 header chain

Limiting processing of ext. headers

- Limits on number of extensions headers, number of options & padding in DestOps & HbH opts, etc.
- Processing long lists of TLVs and VLH and inherently serialized and difficult to do "fast-path"
- Example, a sender could send a packet with 700 HbH options: only purpose is DoS attack!

Limiting IPv6 header chain length

- Motivated by common practice that intermediate routers parse into the transport layer in a packet
- Implementations may have limited capabilities to parse into a packet (e.g. hardware parsing buffer)

Public Internet v. Limited Domains

Applying the amended robustness principle

- When sending into public Internet, apply restrictive limits
- When sending into limited domain, limits can be relaxed
 - Limited domains not normatively defined, work around that with "a priori" knowledge of the path
 - Attaining knowledge: sending in closed network, probing, historical information, mash-up map of capabilities in the Internet
 - Some EH & options, like SRv6 and IOAM HbH, are intended only for use in limited domains-- restrictive limits are not relevant to them

Application of limits

	Identification	Limits (Hdr. chain applies to all receivers)	Behavior when limit exceeded
Host: sending EH	Source of packet	Limit setting EH in packets	
Host: receiving EH	Final destination address	Limits on all extension headers	Drop packet
Router	Intermediate node not in destination address	Limits on processing HbH options	Ignore data beyond the limit and forward
Intermediate destination	Non-final destination in routing header	Limits on HbH, DO before RH, RH	HbH options limits: Router behavior
			DestOpt, RH limits: Host behavior

Default Sending Host Limits

- Hosts MUST NOT send a packet with an EH longer than Hosts MUST NOT send more than eight non-padding DO or HbH options
- Hosts MUST not send consecutive pad options, padding MUST be <= 7 bytes
- Hosts MUST limit Data Length in HbH and DO options to sixty bytes

Default Sending Host Limits

- Hosts MUST NOT send a packet with length of EH header chain greater than 104 bytes
 Derivation:
 - 128 bytes minimal parsing buffer for interm. nodes
 - Evidence suggests minimum is commonly supported
 - Less than that is not viable for ext. hdrs.
 - 128 (16 bytes L2 hdr., 8 bytes transport hdr.) = 104
- Allows 64 bytes for extension headers
 - 104 40 bytes IPv6 header = 64 bytes

Optional Receiving Limits

- # non-padding DO or HbH options (default 8)
- Maximum length of DO or HbH options
- Maximum length of DO, HbH, RH EH
- Padding <= 7 bytes
- No consecutive pad options
- Limits on IPv6 header chain length

Notes on receive limits

- If behavior of a limit being exceeded in to drop, RX limits should be >= sending limits
- Limit of HbH means an intermediate node can decide to process only first N options
 - In this draft #_opts >= N >= 0
 - RFC246: **N = #_opts**
 - RFC8200: **N** = **0** or **N** = **#_opts**
 - In draft-hinden-6man-hbh-processing **N > 0**

Thank you!