
EAP-based Authentication Service for CoAP

draft-ietf-ace-wg-coap-eap-03

Rafael Marín-López, University of Murcia
Dan García-Carrillo, University of Oviedo

IETF 111 meeting, July 29th, 2021

CoAP-EAP – Updates Summary of 03 version

• Added /.well-known/ for both entities
• Changed URI to conform to HATEOAS
• Added Error handling section
• Added Cryptosuite negotiation
• Elaborated process of key derivation
• IANA considerations

CoAP-EAP – Added /.well-known/ for both entities

• Added well-known URI /.well-known/a (To be assigned by IANA)
• Set in both entities, IoT device and Controller

NON POST /.well-known/a [NON, MID=50,Token, Options(No-response)

IoT Device/
CoAP
Server

Controller/
CoAP Client

POST /.well-known/a [CON, MID=0x20,Token, Payload(EAP Req/Id)]

ACK [MID= 0x20,Token, 2.01 Created, Location-Path(a/x), Payload(EAP Rep/Id)]

1
2
3

CoAP-EAP – Ordering guarantee following
HATEOAS
• In the first ACK the server can choose the value of the URI as it

pleases.
Example
• The server can create a new resource with structure

• /a/x
• x -> Value representing the current step in the authentication process

• Could be a completely different value /randomValue

• The CoAP engine will take care of handling retransmissions, duplicate
detection, sending error for non-existing resources, etc.

CoAP-EAP – Error handling
Possible Issues - How to manage out of place POST /.well-known/a ?

From EAP authenticator to peer
WITH or WITHOUT ONGOING Authentication

• Send a CoAP Reset message. The IoT device did not send the starting message

NON POST /.well-known/a [NON, MID=50,Token, Options(No-response)

IoT Device/
CoAP
Server

Controller/
CoAP Client

POST /.well-known/a [CON, MID=0x20,Token, Payload(EAP Req/Id)]

ACK [MID= 0x20,Token, 2.01 Created, Location-Path(a/x), Payload(EAP Rep/Id)]

1
2
3

POST /.well-known/a [CON, MID=0x20,Token, Payload(EAP Req/Id)]

RST [MID= 0x20,Token, 0.00]

CoAP-EAP – Error handling

From EAP peer to authenticator
• WITH ONGOING Authentication

• OMIT since the message is NON Confirmable with No-Response Option

• WITH no ONGOING Authentication
• If arrives to the CoAP-EAP application in the Controller, tries to start.
• Being out of place, the IoT did not purposely send this message, sends Reset.

NON POST /.well-known/a [NON, MID=50,Token, Options(No-response)

IoT Device/
CoAP
Server

Controller/
CoAP Client

1
2
3

POST /.well-known/a [CON, MID=0x20,Token, Payload(EAP Req/Id)]

RST [MID= 0x20,Token, 0.00]

CoAP-EAP – Cyphersuite negotiation

• How to manage the Cyphersuite negotiation within the existing
exchange (Not adding more messages)

• New Option
• Not our first choice because

• All CoAP implementations should be updated
• It will only be used for CoAP-EAP, it is not something useful in other CoAP application

• Embedding the cyphersuite negotiation in the CoAP payload
• A cleaner option as we do not modify existing implementations
• Only need a defined structure to parse.

• The cyphersuite negotiation is embedded into the key derivation to
bind them and prevent a downgrading attack.

CoAP-EAP – Cryptosuite negotiation

Example of disposition of the CoAP Payload

NON POST /.well-known/a [NON, MID=50,Token, Options(No-response)

IoT Device/
CoAP Server

Controller/
CoAP Client

POST /.well-known/a [CON, MID=0x20,Token, Payload(EAP Req/Id || CBORArray [0,1,2])]

ACK [MID= 0x20,Token, 2.01 Created, Location-Path(a/x), Payload(EAP Resp/Id || CBORArray [0])]

1

2

3

Exchange with the cryptosuite negotiation

CoAP-EAP – Key derivation

• Master Secret = KDF(MSK, CSO | "OSCORE MASTER SECRET" , length)
• Master Salt = KDF(MSK, CSO | "OSCORE MASTER SALT" , length)
• Recipient ID = KDF(MSK, "OSCORE RECIPIENT ID" , length)
• Sender ID = KDF(MSK, "OSCORE SENDER ID" , length)

Where:
• KDF is the HKDF-Expand function from (HMAC)-based key derivation function (HKDF) defined in [RFC5869]
• MSK is the Master Session Key derived from the EAP method
• CSO is the concatenated content of the Cyphersuite negotiation. If empty the null-string is used.
• labels are specific for each derivation
• Length is the max length of the output key material. Each one as a specific maximum length specified by OSCORE.

Cyphersuites compatible with OSCORE
AEAD , HASH

0. AES-CCM-16-64-128 , SHA-256
1. A128GCM , SHA-256
2. A256GCM , SHA-384

CoAP-EAP – Current state

NON POST /.well-known/a [NON, MID=50,Token, Options(No-response)

IoT Device/
CoAP Server

Controller/
CoAP Client

POST /a/x [CON, MID=0x32,Token, Payload(EAP-X-Req 1)]

ACK [MID=0x32, Token, 2.01 Created, Location-Path(a/y), Payload(EAP-X-Resp 1)]

POST /a/y [CON, MID=3, Token, Payload(EAP-X-Req n)]

ACK [MID=43, Token, 2.01 Created, Location-Path(a/z), Payload(EAP-X-Resp n)]

POST /a/z [CON, MID=4,Token, Option(OSCORE) Payload(EAP Success || Session Lifetime))]

ACK [MID=43, Token, 2.01 Created, Options(OSCORE)

MSK
|
v

OSCORE
Context

POST /.well-known/a [CON, MID=0x20,Token, Payload(EAP Req/Id || Cyphersuite)]

ACK [MID= 0x20,Token, 2.01 Created, Location-Path(a/x), Payload(EAP Resp/Id || Cyphersuite)]

MSK
|
v

OSCORE
Context 10

1

2
3

4

5

6
7

8
9

IANA considerations

• Assignment of EAP lower layer identifier

• Assignment of the URI /.well-known/a

THANK YOU

12

	EAP-based Authentication Service for CoAP��draft-ietf-ace-wg-coap-eap-03���Rafael Marín-López, University of Murcia�Dan García-Carrillo, University of Oviedo���IETF 111 meeting, July 29th, 2021
	CoAP-EAP – Updates Summary of 03 version
	CoAP-EAP – Added /.well-known/ for both entities�
	CoAP-EAP – Ordering guarantee following HATEOAS
	CoAP-EAP – Error handling
	CoAP-EAP – Error handling
	CoAP-EAP – Cyphersuite negotiation
	CoAP-EAP – Cryptosuite negotiation
	CoAP-EAP – Key derivation
	CoAP-EAP – Current state
	IANA considerations
	Número de diapositiva 12

