An Auto-deployment Mechanism for Resource-based Network Services

draft-dang-anima-network-service-auto-deployment

Joanna Dang (dangjuanna@huawei.com)

Sheng Jiang (jiangsheng@huawei.com)

Zongpeng Du (duzongpeng@chinamobile.com)

IETF-111: July 2021, Online

Introduction

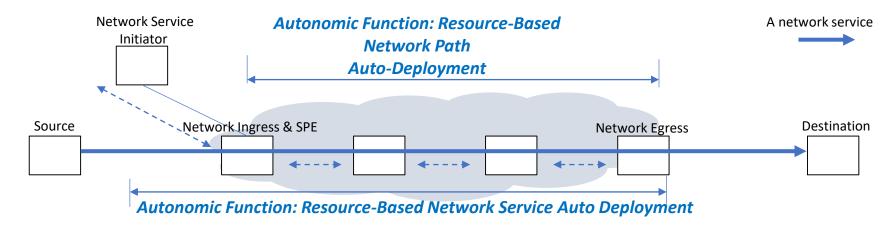
• This document specifies an auto-deployment mechanism that deploys resource-based network services through the Autonomic Control Plane (ACP) in an Autonomic Network. This mechanism uses the GRASP defined in [RFC8990] to exchange the information among the autonomic nodes so that the resource among the service path can be coordinated.

Service

• A unicast or multicast flow which has the source (where it starts) and the destination (where it terminates).

Network Service

- A unicast or multicast flow which has reference points termed "Network Ingress" (where a Network service starts) and "Network egress" (where a network service ends).
- A network service flow contains one or more (aggregated) service flows (N:1 mapping).


Resource-based Network Services

 A network service flow has the resource requirement which are extremely assured minimum bandwidth, assured maximum end-to-end delivery latency, and so on.

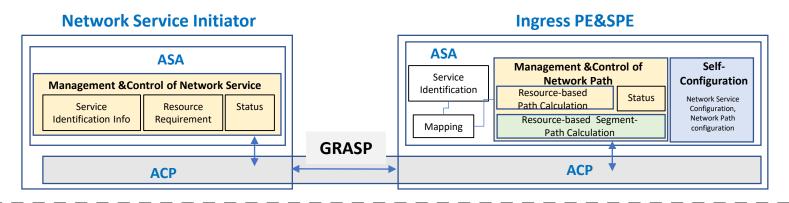
Resource-based Network Path

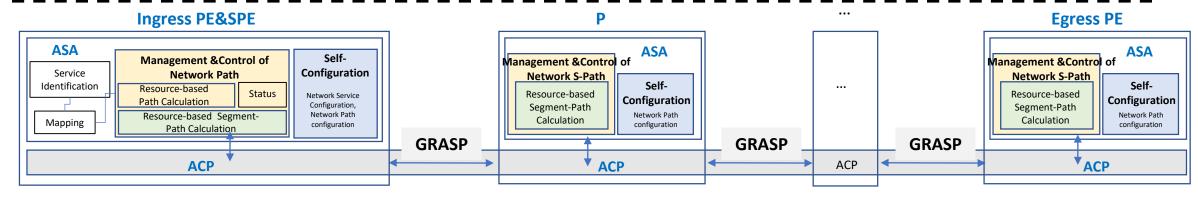
- A Network Path, which has the definite Ingress node and Egress node, can deliver a network service.
- A resource-based network path can satisfy the resource requirement of network service.
- Encapsulated Type: VxLAN, or GRE, or MPLS, or SR, etc.

Requirement

Resource-Based Network Service Auto-Deployment

- The service initiator issues network service deployment instructions with resource requirements to SPE.
- The SPE must check whether UNI interface of SPE can meet the requirement this service.
 - If it can, the SPE will create / update a resource-based network path between SPE and Egress.


Resource-Based Network Path Auto-Deployment

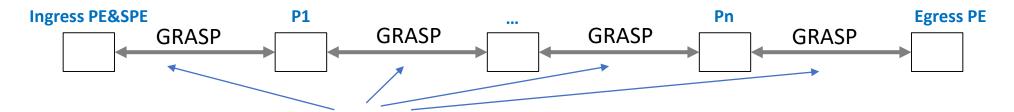

- If the resource-based network path is successfully established / updated, the SPE will inform the service initiator
 of the successful service deployment.
- If the resource-based network path fails to be established, the SPE will inform the service initiator of the failed service deployment.
- If it can't, the SPE will inform the service initiator of the failed service deployment.

The service / path information with resource need to be exchanged among the network service initiator, Ingress PE&SPE node, PE node and Egress node.

GRASP Extension for Resource-based Network Services Deployment

- According to RFC8993, new GRASP Objectives must be designed for this mechanism.
 - New GRASP Objective Options
 - A GRASP objective option described in RFC8990 is used to identify objectives for the purposes of discovery, negotiation, or synchronization.

New GRASP Objective Options(1/2)



A New GRASP Objective Option

- name: s-deployment-value, which is need to be assigned by IANA registration
- objective-flag: F_DISC and F_SYNCH
- objective-value: a data structure as follows
 - s-identification, which is used to distinguish different network services
 - s-deployment-type, which indicates that it is new, or updated, or deleted
 - s-resource-information, which are the assured resources of the network service.
 - resource-type, which indicates bandwidth, or latency, etc.
 - resource-value, which indicates the value.
 - s-deployment-status, which indicates deployment success or failure, and the reason for the failure

Thanks Michael Richardson and Brian E Carpenter for the suggestions and comments.

New GRASP Objective Options (2/2)

A New GRASP Objective Option

- name: s-p-deployment-value, which is need to be assigned by IANA registration
- objective-flag: F DISC and F SYNCH
- objective-value: a data structure as follows
 - s-p-identification, which is used to distinguish different network paths
 - s-p-deployment-type, which indicates that it is new, or updated, or deleted
 - s-p-resource-information, which are the assured resources of the network path.
 - resource-type, which indicates bandwidth, or latency, etc.
 - · resource-value, which indicates the value.
 - s-p-deployment-type, which indicates deployment success or failure, and the reason for the failure

Process of Network Service Auto-deployment

A new/updated network service deployment.

- The network service initiator send a SPE a GRASP Request Negotiation message with s-deployment-value, n-s-identification, s-deployment-type filled new or update type, s-resource-information.
- The SPE first detects whether the UNI interface meets s-resource-information, and then detects whether the network path meets p-resource-information.
 - If they all satisfy the resource-information, the SPE will send back a GRASP Negotiation Message with s-deployment-value, s-identification, s-deployment-type, s-deployment-status filled deployment success.
 - If one of the preceding items does not meet the requirements, the SPE will send back a GRASP Negotiation Message with s-deployment-value, s-identification, s-deployment-type, s-deployment-status filled deployment failure and related reasons.

A withdrawal network service deployment

- The network service initiator send a SPE a GRASP Request Negotiation message with s-deployment-value, n-s-identification, s-deployment-type filled withdrawal type.
- The SPE notifies the network nodes along the path to released the related information and releases its own information before sending back a GRASP Negotiation Message with s-deployment-value, s-identification, s-deployment-type, s-deployment-status filled withdrawal success.

Processes of Resource-based Network Path deployment

A new/updated network path deployment

- The SPE send its own downstream node along the path a GRASP Request Negotiation message with s-p-deployment-value, s-p-identification, s-p-deployment-type filled new or update type, s-p-resource-information.
- The downstream node continually detects whether the network segment-path meets resource-information.
 - If it satisfies the resource-information, it will send its own downstream node along the path a GRASP Request Negotiation message with s-p-deployment-value, s-p-identification, s-p-deployment-type filled new or update type, s-p-resource-information. If this node is an Egress PE, it will send its own upstream node a GRASP Negotiation Message with s-p-deployment-value, s-p-deployment-type, s-p-deployment-type, s-p-deployment-status filled deployment success.
 - If one of the preceding items does not meet the requirements, the network node will send its own upstream node along the path a GRASP Negotiation Message with s-p-deployment-value, s-p-identification, s-p-deployment-type, p-deployment-status filled deployment failure and related reasons.

A withdrawal path deployment

• The SPE sends its own downstream node along the path a GRASP Request Negotiation message with s-p-deployment-value, s-p-identification, s-p-deployment-type filled withdrawal type, s-p-resource-information. The network node along will release related resources before sending back a GRASP Negotiation Message with s-p-deployment-value, s-p-identification, s-p-deployment-type, s-p-deployment-status filled withdrawal success.

Resource Process

- Use Case1: Minimum bandwidth
 - The nodes, the outbound interface of the node and the inbound interface of the node along the path must satisfy this parameter. Therefore, the bandwidth parameters carried in a GRASP Request Negotiation message sent by the nodes along the path can all be the same.
- Use Case2: Maximum end-to-end delivery latency
 - It is sum of the forwarding delay and link delay of the nodes along the path. Therefore, the latency resource parameters carried in a GRASP Request Negotiation message sent by the nodes along the path can be the different.

Others

Compatibility

• In the MPLS scenario, the bandwidth-based path deployment can use the RSVP protocol. The ASA described in this document can also interact with RSVP.

Security Considerations

 GRASP nodes and messages require full protection. GRASP MUST run within a secure environment such as the ACP [RFC8994].

IANA Considerations

The new GRASP Objectives are especially designed for network service deployment.
 So the objective-name of n-s-deployment-value and s-p-deployment-value need to be assigned.

Next Step

• Welcome to comment, contribute or co-author it!

Thank you!