
Let’s revive Babel-RTT

Juliusz Chroboczek

IRIF

Université de Paris

26 July 2021

1/12

Babel extensions

Babel extensions are either:

– in the process of being standardised

(source-specific, Babel-MAC);

– or not used in production

(radio diversity, ToS-specific).

One exception: Babel-RTT:

– used in production;

– only described in:

– an expired IETF draft;
– a rejected paper (not a very good one).

2/12

History

History:

– Nexedi described the problem, early 2014;

– solution designed in 2014;

– implemented and written up in collaboration with

Baptiste Jonglez, summer 2014;

– deployed in production by Nexedi, autumn 2014;

– presented to this WG, 28 March 2019;

– continuously deployed in production for 7 years!

Described in:

– draft-ietf-babel-rtt-extension-00 (October 2019);

– https://arxiv.org/abs/1403.3488.

3/12

https://arxiv.org/abs/1403.3488

Problem statement

Nexedi have been running a global overlay network

between datacenters:

Paris

Lille

Marseille

Tokyo

What happens when the Lille-Marseille link is down?

In 1/2 of the cases, unextended Babel chose to reroute

the traffic through Tokyo.

Nexedi were not happy.

4/12

Solution: use RTT

In 1/2 of the cases, unextended Babel chooses to

reroute the traffic through Tokyo.

That’s not good.

Initial suggestion: a GPS in every data center.

That’s reportedly not practical.

Idea: measure RTT (two-way delay) and derive a metric

from that. But

– the natural way to measure RTT requires

asymmetric, synchronous interaction; Babel is a

symmetric, asynchronous protocol;

– using RTT as input to a routing metric causes a

(negative) feedback loop, which may lead to

oscillations.

5/12

Measuring RTT (1)
The naive algorithm

t

to
The natural way to measure RTT is

asymmetric and synchronous.

Client says “ping!”.

Server replies “pong!” as fast as possible.

RTT = t − t
o
.

Babel is a symmetric, asynchronous algorithm.

The naive “ping” algorithm is a poor fit for Babel.

6/12

Measuring RTT (2)
Mills’ algorithm

t

to

tr
tt

Mills’ algorithm, used in HELLO and NTP.

The remote peer sends a packet with:

– t
o
, the origin timestamp;

– t
r
, the reference timestamp;

– t
t
, the transmit timestamp.

RTT = (t − t
o
) − (t

t
− t

r
).

This is a symmetric, asynchronous algorithm that

doesn’t require clocks to be synchronised.

Its accuracy depends on:

– t
t
computed as late as possible before transmission;

– t computed as early as possible after reception;

– clock drift negligible during a packet exchange.

7/12

Adapting Mills’ algorithm in Babel

Babel uses multicast and unicast packets.

– Transmission timestamp t
t
conceptually multicast,

stored in Hello TLV;

– origin and reference timestamp unicast,

stored in IHU TLV.

Granularity of timestamp is 1𝜇s.
(Originally 10ms, but Dave complained.)

8/12

Packet format

Timestamp in Hello:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type = 3 | Length | Transmit timestamp |
+-+
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Timestamp in IHU:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type = 3 | Length | Origin timestamp |
+-+
| | Receive timestamp |
+-+
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Should we be using distinct types?

9/12

Oscillations

Using RTT as a routing metric leads to oscillations

In principle, Babel doesn’t care. However, oscillations

may lead to packet reordering, which harms higher

layer protocols.

10/12

From RTT to route selection

Babeld uses a complex process to map RTT to values

usable in route selection.

RTT samples

smoothed RTT

penalty

link cost

metric

route selection

smoothing

mapping

+

hysteresis

Mills’ algorithm yields

RTT samples.

Our goal is

route selection.

The RTT samples are

processed in order to

minimise:

– noisy signal;

– oscillations

11/12

Conclusion

Babel-RTT is the only widely-deployed Babel extension

that is not being standardised.

Reasons:

– simple algorithm, but difficult to make it work well;

– lack of a theoretical understanding.

I intend to revive draft-ietf-babel-rtt-extension for

publication as an Experimental RFC.

Please object now! Please review!

12/12

