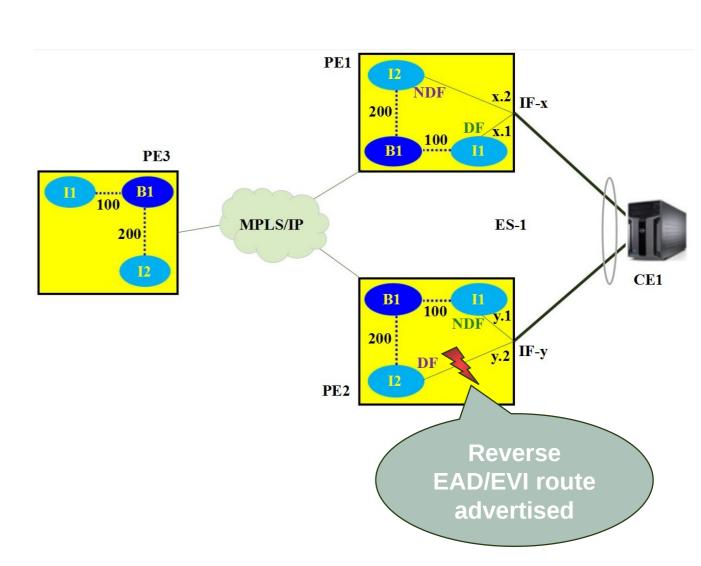

AC-DF per EVI

Author(s): Yubao Wang

Problem Statement

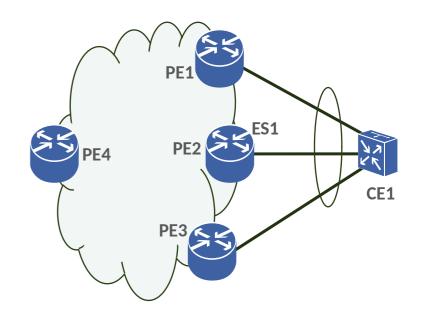
- IF-x and IF-y are two interfaces on ES-1
 - ><ES-1, 100>'s DF is subinterface x.1, non-DF is subinterface y.1
 - <ES-1, 200>'s DF is subinterface y.2, non-DF is subinterface x.2
- No AC-DF for PBB EVPN
 - > y.2 fails but IF-y still works
 - but <ES-1, 200>'s DF unchanged after that failure
 - > so I-VPLS 200's BUMs (from PE3 to CE1) are dropped by x.2 even after that failure

Notes: I-VPLS I1's I-SID is 100, I-VPLS I2's I-SID is 200, and they use the same B-VPLS B1.

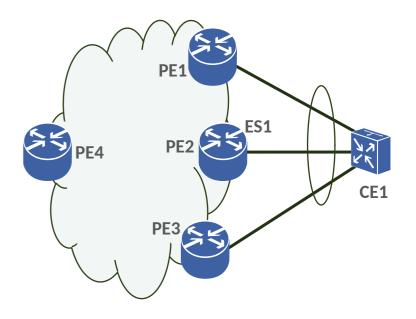

AC-DF per EVI Procedures

AC-DF per EVI

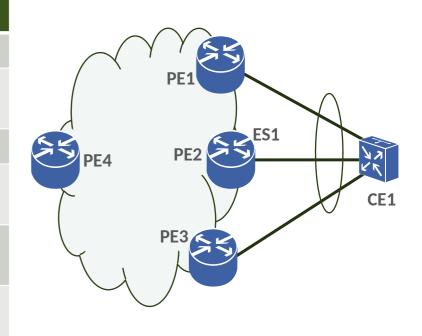
- ✓ y.2 fails but IF-y still works
- ✓ Reverse EAD/EVI route advertised for y.2 after that failure
- √ x.2 becomes <ES-1, 200>'s DF
- ✓ <ES-1, 100>'s DF won't change


Route Scale

- ✓ No Reverse EAD/EVI route before y.2 fails
- ✓ No ordinary Ethernet A-D routes


Comparison with vESI solution

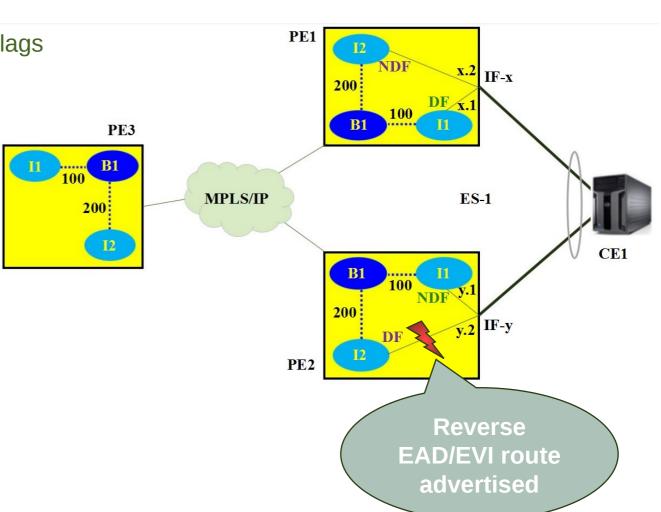
Items	AC-DF per EVI Solution	vESI Solution
ESIs	one per port	one per subinterface
RT-4 Routes	one per port	one per subinterface
B-MACs	one per port	one per subinterface
Service Carving	auto	manual configuration
Ethernet A-D per EVI	none	none
Reverse EAD per EVI	one per failed sub-interface	none
DF Preference(DF Alg 2)	per port	per subinterface


AC-DF per EVI Capability Encoding

0 1 2 3

AC-DF per EVI Capability Negotiation Use Cases

No.	PE1 Capabilities	PE2 Capabilities	PE3 Capabilities	Negotiated Capabilities
1	AC-DF per EVI	AC-DF per EVI	AC-DF per EVI	AC-DF per EVI
2	AC-DF per EVI	AC-DF	AC-DF (old device)	no Capabilities
3	AC-DF per EVI	AC-DF per EVI	no Capabilities	no Capabilities
4	AC-DF and AC-DF per EVI	AC-DF and AC-DF per EVI	AC-DF and AC-DF per EVI	AC-DF per EVI
5	AC-DF and AC-DF per EVI	AC-DF and AC-DF per EVI	AC-DF (old device)	AC-DF
6	AC-DF and AC-DF per EVI	AC-DF and AC-DF per EVI	AC-DF per EVI	AC-DF per EVI
7	DF Alg 1 and AC-DF per EVI	DF Alg 0 and AC-DF per EVI	DF Alg 2 and AC-DF per EVI	DF Alg 0 no Capabilities



Case 1~6: PE1,PE2 and PE3 use the same DF Alg which is also the negotiated DF Alg

Old Device: Old devices don't recognize the AC-DF per EVI Capability

Implementation Methods of Reverse EAD/EVI Route

- Method1: Based on Ethernet A-D per EVI
 - MP_REACH_NLRI on y.2's failure
 - ✓ Extended EVPN Layer 2 Attributes Control Flags
 - ✓ D bit: AC-Down on Advertising PE
 - ► MP_UNREACH_NLRI on y.2's recovery
- Method2: New Route type
 - ► MP_REACH_NLRI on y.2's failure
 - ► MP_UNREACH_NLRI on y.2's recovery

