A YANG Data Model for Transport Network Client Signals

CCAMP WG, IETF111, Virtual
draft-ietf-ccamp-client-signal-yang-05

Authors:
Haomian Zheng (zhenghaomian@huawei.com)
Aihua Guo (aihuaguo.ietf@gmail.com)
Italo Busi (Italo.Busi@huawei.com)
Anton Snitser (antons@sedonasys.com)
Francesco Lazzeri (francesco.lazzeri@ericsson.com)
Yunbin Xu (xuyunbin@caict.ac.cn)
Yang Zhao (zhaoyangyjy@chinamobile.com)
Xufeng Liu (xufeng.liu.ietf@gmail.com)
Giuseppe Fioccola (giuseppe.fioccola@huawei.com)
Status Review

- WG Adopted in May 2019;
- Draft updated to:
 - Integrated the E-Tree in this update;
 - Satisfy the multi-technology applicability;
Changes since Last Presentation

• Extended in the module ietf-eth-tran-types to support E-Tree.

 Add three new child identity under access-role base-identity:
 - Root-primary
 - Root-backup
 - Leaf-access

• An implementation status is added for validation:
 - ONAP CCVPN uses the ETH Service YANG model as the ACTN MPI
 - https://wiki.onap.org/display/DW/CCVPN%28Cross+Domain+and+Cross+Layer+VPN%29+USE+CASE
Next Step

- Check and cover more client signals;
- Driving to maturity and request WG LC;
A YANG Data Model for Client Signal Performance Monitoring

CCAMP WG, IETF111, Virtual

draft-zheng-ccamp-client-pm-yang-04

Authors:
Haomian Zheng (zhenghaomian@huawei.com)
Italo Busi (Italo.Busi@huawei.com)
Yanlei Zheng (zhengyanlei@chinaunicom.cn)
Victor Lopez (victor.lopez@nokia.com);
Oscar Gonzalez de Dios(oscar.gonzalezdedios@telefonica.com);
Motivation

- Performance monitoring based on configured client signals;
 - Ethernet service;
 - Transparent client signals;

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Layer2</th>
<th>Layer1</th>
<th>Layer0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay/Latency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit Error Rate (BER)</td>
<td>?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packet Loss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jitter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bandwidth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byte/Packet number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Changes since Last Presentation

- Two new co-authors (welcome);
- Editorial in the module to make it in compliance with RFC8407;
- Extended the bandwidth to ingress/egress bandwidth.

Add two new child identity under performance-parameter-type base-identity:

```plaintext
definition ingress-bandwidth {
    base performance-parameter-type;
    description |
        "Current bandwidth usage of the ingress traffic."
    }

definition egress-bandwidth {
    base performance-parameter-type;
    description |
        "Current bandwidth usage of the egress traffic."
    }```
Open issues: Model Relationship

Importation & Augmentation:
- We imported the ietf-eth-tran-service and ietf-trans-client-service, in the client-signal-yang draft;
- To align the Index;

Issue #61: propose to reuse some types or have a common types for pm;

Other PM-related Documents:
- draft-ietf-teas-actn-pm-telemetry-autonomics: focus on the PM mainly on VN and Tunnels, instead of service (covered in this document);
- draft-www-bess-yang-vpn-service-pm: focus on the VPN level, especially among overlay VPN sites;
Open issues: Model Structure

- Time Interval for PM
- Delay, BER, etc...;
- Numerical Value;
- Unit (ms, Gbps, etc.)

---ro performance-data* [parameter-name]

---ro parameter-name identityref

---ro parameter-value* [index]

---ro index uint64

---ro value performance-parameter-value

---ro value-unit string

---ro value-description? string

---ro start-time? yang:date-and-time

---ro end-time? yang:date-and-time

**Issue #88**: to align the rate for packet traffic, and understand how the rate is measured;

**Issue #89**: at which point the measurement is required?
Next Step

• For WG adoption, we need
  – Confirm the work to be useful;
  – Agree on the model relationship;

• For other open issues:
  – Agree on model structure;
  – Working on the details of each PM parameter;
  – Get consensus on the representation of ‘sampling point’;