Framework and Data Model for OTN Network Slicing

draft-zheng-ccamp-yang-otn-slicing-02

Co-authors: Haomian Zheng (Huawei) Italo Busi (Huawei) Aihua Guo (Futurewei) Victor Lopez (Nokia) Sergio Belotti (Nokia) Dieter Beller (Nokia) Reza Rokui (Nokia) Luis M. Contreras (Telefonica)

Contributors: Oscar Gonzales (Telefonica) Yunbin Xu (CAICT) Yang Zhao (China Mobile)

Contributors: Henry Yu (Huawei)
Major Updates Since IETF 110

- Admin
 - Weekly meeting (Thu 10-11am EST)
 - GitHub: https://github.com/aguoiietf/ietf-ccamp-yang-otn-slicing
 - Expanded list of authors and contributors

- Draft Updates
 - Added use case: end-to-end network slicing
 - Clarified definitions
 - OTN Slice
 - OTN Slice Controller (OTN-SC)
 - Relationship between an OTN slice and an IETF network slice
 - Abstraction methods for OTN slices
 - Connectivity-based vs. resource-based
 - OTN-SC recursion
Definition & Scope of OTN Slice

• Aligned the definition with IETF network slicing [I-D.ietf-teas-ietf-network-slices]
 • An OTN slice is an OTN virtual network topology connecting a number of OTN endpoints using a set of shared or dedicated OTN network resources to satisfy specific service level objectives (SLOs).
 • An OTN slice is a technology-specific realization of an IETF network slice in the OTN domain

• Scope of OTN slice for single-domain & multi-domain
 • Access link – Access link
 • Access link – Inter-domain link
 • OTN segment slices in hierarchical or sequential (stitched) combination

Figure 1: OTN Slice
Abstraction Method for OTN Slices

• Connectivity-based OTN slices are abstracted as a set of endpoint-to-endpoint links, with each link formed by an end-to-end tunnel across the underlying OTN networks.

• Resource-based OTN slices are abstracted as an abstract topology to allow resource sharing between endpoints, and on-demand commissioning within the slice.
 • Better optimization of resources
 • Real world example: OTN slice supporting high-quality, real-time broadcasting of sports events between multiple stadiums and TV station

• The methods are similar to the Virtual Network (VN) concept defined in RFC8453
 • VN type 1 – connectivity-based slicing
 • VN type 2 – resource-based slicing
OTN Slicing Controller & Interfaces

• OTN Slice Controller (OTN-SC)
 • A logical function responsible for the life-cycle management of OTN slices instantiated within the corresponding OTN network domains
 • Translating slice configuration into TE tunnels or TE abstract topologies with resource coloring at the MPI
 • Flexible deployment
 • Recursive

• OTN-SC NBI
 • Serves orchestrator for direct OTN slice requests
 • An IETF NSC has the option to use OTN-SC NBI or directly interface with PNC/MDSC to realize slices

• OTN-SC SBI
 • SBI clients: ACTN PNC / MDSC
OTN Slicing for Multi-domain

- OTN-SC – OTN-SC recursion
- OTN-SC – MDSC – PNC

Figure 3: OTN-SC for multi-domain
YANG Models @ MPI

• Coloring TE links

• Either type/number of ODU containers or number of time slots could be used for coloring TE link resources at the MPI

* A prior version of this YANG model was contributed to ONAP and is included in its Guilin Release.
Next Steps

• Continue updating the YANG model for OTN-SC SBI (i.e. MPI in Fig. 2)
• Develop YANG model for OTN-SC NBI. Looking into related work, e.g.
 • draft-liu-teas-transport-network-slice-yang
 • draft-wd-teas-transport-slice-yang for NBI towards the orchestrator
 • draft-contreras-teas-slice-controller-models
 • draft-ietf-teas-actn-vn-yang
• Address the slicing for external (access and inter-domain) links that support client signals other than OTN
• Address comments and reviews from the WG
• The authors believe the draft is ready for WG adoption
 • Consensus on the definition & scope among authors
 • Good interest
 • Stable YANG MPI and clear development path for NBI
Thank You!