

HPKE is great,

but…

Compact output compels use of compact representation!

HPKE has some bloat*

* For KEMs using P-256, P-384, and P-521

HPKE supports “compact output”– the secret is the x-coordinate only of the ECDH shared point
- If the sign doesn’t matter to the secret then it doesn’t matter to the public keys
- Public keys can be serialized as the x-coordinate only-- ”compact representation”

Problematic for:
- constrained devices or constrained environments
- “one shot” API usage with short messages

Serialization produces a public key that is > 2x that which is necessary

HPKE has some bloat*

* For KEMs using P-256, P-384, and P-521

p256 with SEC uncompressed serialization:

041e9081e36299e5d4c7c30f3eeae1b4ccef32b9953f6cd3cf97e3fb76cd7e6791a0e8aee893612305ae4f32b2f9f0219ecede8fabd96ee07c063f802b43731471

p256 with RFC 6090 compact output serialization:

931538d413b9ca3692a9e7ec34ec0d29db62715eee8044fa06e5cd111d17f30b

HPKE assumes guaranteed, in-order delivery
- Nonce management is entirely in the HPKE context
- No way to know which nonce was used with a given ciphertext
- No way to synchronize after loss/reorder
- No way to even notice except everything suddenly stops working
- Packet loss or packet reordering is tragic with HPKE

The Internet is not guaranteed, in-order delivery

HPKE APIs don’t, and shouldn’t, care about nonces
- Users not managing nonces is A Good Thingtm
- Addressing loss/reordering shouldn’t change the APIs
- Just need to ensure that loss/reordering isn’t tragic

Need deterministic authenticated encryption cipher modes
- There are no nonces to worry about
- Each packet can be decrypted in situ

“why not just export a key from the context and do any cipher you want outside of HPKE?”

Because I want to use HPKE; if I wanted a static-ephemeral ECDH key exchange I’d use one.

Security Proof for DAE is in the paper*
TL;DR: It’s deterministic, so it cannot conceal whether
a plaintext+AAD combo was encrypted twice in a
sequence of ciphertexts– i.e. it’s not IND-CCA2

* Rogaway, P. and T. Shrimpton,
"Deterministic Authenticated Encryption, A Provable-Security Treatment of the Key-Wrap Problem”,
EUROCRYPT ’06, Saint Petersberg, Russia, 2006

Implications for using a DAE cipher mode:
• Some use cases won’t care– idempotent messages, or just want AE
• Some use cases can ensure something “new” in each message:

• Put time-since-epoch in the AAD or, to obtain privacy, as a tweak in the plaintext
• If any bit in the AAD or plaintext is “new” then the synthetic IV will look random

and therefore the output will, likewise, look random– adversary is no longer able
to determine whether the same plaintext(+AAD) was encrypted twice

A reasonable approach to obtain resistance to packet loss/reordering!

Compact representation
- New KEMs for NIST curves
- Compact representation (RFC 6090)

Deterministic Authenticated Encryption
- Support for AES-SIV (RFC 5297)
- No nonce generated/used in HPKE context

Proposal: Add the following…

Source code:
https://github.com/danharkins/hpke-wrap

- Compliant with -10 of HPKE
- Supports compact representation with new KEM values*
- Supports deterministic authenticated encryption ciphers*
- Complete test vectors (based on the latest version of HPKE test vectors)

* Took the liberty of stealing some values reserved to IANA for test vector generation

Internet-Draft:
draft-harkins-cfrg-dnhpke-00

