

IloT Smart Factories

USE CASE PEER STRITZINGER GMBH

2021-07-27

Bosch Integrated Power Break

High Level User Story (aka Elevator Pitch)

- Plug & Produce
 - Smartness is built into conveyor belt parts
 - Installation without programming
 - Modification in operation without programming
- Adaptive Optimised One Piece Material Flow
 - Workpiece distribution for 100% process utilisation
 - Automatic reaction to changes
 - Time & Cost optimisation (- 40% according to a calculation with a real manufacturing line)

PEER STRITZINGER 5

Mapping Processes to Nodes

Modes of Operation

Relatively Static Mapping:

- Distributed calculation of good enough mapping of processes to nodes
- Occasional recalculation when preconditions change

Very Dynamic Mapping:

- Processes migrate and spawn regularly
- Migration decision from local and regional knowledge

DIPL. PHYS.

PEER STRITZINGER

Dynamic Mapping Static Mapping

Erlang + Unikernel

Deploying Erlang directly on Real and Virtual Hardware

Research questions

- Can a distributed orchestrator map the computation in these cases
- Can we successfully run a distributed online planning algorithm on a mesh of IoT systems only?
- How could a generic extensible solution look like?
- Possible extension: Ethernet TSN path control and reservation

PEER STRITZINGER

TRADITIONAL ARCHITECTURE

ERLANG VM

APPLICATION

OTHER SOFTWARE

VS

OPERATING SYSTEM

HARDWARE

https:/www.grisp.org

GRISP

IoT Devices

Micro Server	>= 1000 MIPS	>= 1GB	
Large Grisp Node	500 MIPS	512MB	GRISP 2
Medium GRiSP Node	100 MIPS	64MB	GRISP 1
Small GRiSP Node	30 MIPS	8MB	SoC

DIPL. PHYS.
PEER STRITZINGER