Group Communication for the Constrained Application Protocol (CoAP)

draft-ietf-core-groupcomm-bis-04

Esko Dijk, IoTconsultancy.nl
Chonggang Wang, InterDigital
Marco Tiloca, RISE

IETF 111, CoRE WG, July 28th, 2021
Goal

› Intended normative successor of experimental RFC 7390 (if approved)
 – As a Standards Track document
 – Obsoletes RFC 7390; Updates RFC 7252 and RFC 7641

› Be standard reference for implementations that are now based on RFC 7390, e.g.:
 – “Eclipse Californium 2.0.x” (Eclipse Foundation)
 – “Implementation of CoAP Server & Client in Go” (OCF)

› What’s in scope?
 – CoAP group communication (e.g., over UDP/IP), including latest developments
 – (Observe/Blockwise/Security ...)
 – Caching and re-validation of responses
 – Unsecured CoAP or Group-OSCORE-secured communication
 – Principles for secure group configuration
 – Use cases (appendix)
Update from v -04

Revised caching model – based on feedback from the June CoRE interim [1]

› Freshness model, for the origin client
 – New members can join the group at any time; a local cache entry for responses to a group request may not cover all the responses sent since the latest cache refresh. This needs rules.
 – The client always sends out a group request, unless the client has fresh responses cached for all group servers. This is possible only when the client has a full, up-to-date knowledge of the group membership.

› Validation model, between origin client and origin servers
 – Simple and based on the ETag Option in group request/response, as normally used.
 – The server SHOULD (but is not required to) embed a compact, server-specific ID as ETag value.
 – The client needs to handle potential cases of ‘value conflict’ in ETags from different servers.
 › If responses from two servers have the same ETag value, it’s not possible to validate only one
 – «Legacy» servers not aware of this ETag feature will just ignore the option (=ok)

Update from v-04

Revised caching model – based on feedback from the June CoRE interim [1]

› Caching model at a proxy
 – Creation and maintenance of cache entries
 – Freshness model like for the origin client, with more details about how/when serving from a cache entry
 – Case with end-to-end security based on Cacheable OSCORE

› Response re-validation between proxy and group Servers
 – Based on the ETag option, like between the origin client and the group Servers

› Response re-validation between client and proxy
 – Based on a new Group-ETag option

› All the above moved to draft-tiloca-core-groupcomm-proxy as more appropriate

Update from v-04

Processed review and comments from John Mattsson [2] – To be completed

1. Make more general to cover group communication – Done
 - Not necessarily UDP over IP multicast, although it is the default transport

2. Make more general to about security group communication – Done
 - Not necessarily Group OSCORE, although it is the default security solution

3. Expectations from Group OSCORE and Echo Option about amplification / DoS – Done
 - The problem is mitigated by using Echo, but not prevented altogether

4. Make it clearer what is added/replaced in the updated/obsoleted documents – TODO

5. Explicit dedicated considerations on amplification attacks and DoS
 - Added new Section 6.3 “Risk of amplification” – Need for feedback and possible additional input
 - The NoSec mode is NOT RECOMMENDED and strongly discouraged; examples are given when it can still be acceptable, as discussed in the June CoRE interim. In any other case, security MUST be used.

Update from v-04

› New Section 5.3 – Valid security cases with forward/reverse proxies
 – With forward/reverse proxy → Group OSCORE for e2e security over client ↔ servers
 – With a totally trusted reverse proxy acting entirely on behalf of the client, admit also:
 › Hop-by-hop security over client ↔ proxy
 › Group OSCORE over proxy ↔ servers
 – Further details on security in different legs are left to draft-tiloca-core-groupcomm-proxy

› Clarified interaction between Observe and No-Response Options

› Added informative reference to draft-ietf-core-new-block
 – Servers MUST ignore multicast requests that contain the Q-Block2 Option.

› Open point on terminology – Issue #24
 – Change “backward/forward security” to “backward/forward secrecy” ? Opinions/input ?
Next steps

› Finish addressing the comments from John Mattsson [2]
 – Consider the latest points on amplification raised for draft-mattsson-core-coap-attack
 – Make it clearer what is added/replaced in the updated/obsoleted documents

› (Finish to) address the few remaining Github issues [3], also covering the points above

› Some specific functionalities left for testing in the CoAP implementation
 – Block2 in a multicast request, followed by Block2 unicast requests to each server

› Next version can be ready for WGLC

Thank you!

Comments/questions?

https://github.com/core-wg/groupcomm-bis/
Motivation (backup slide)

› RFC 7390 was published in 2014
 – CoAP functionalities available by then were covered
 – No group security solution was available to indicate
 – It is an Experimental document (started as Informational)

› What has changed?
 – More CoAP functionalities have been developed (Block-Wise, Observe)
 – RESTful interface for membership configuration is not really used
 – Group OSCORE provides group end-to-end security for CoAP

› Practical considerations
 – Group OSCORE clearly builds on RFC 7390 normatively
 – However, it can refer RFC 7390 only informationally